semiclassical approach
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 25)

H-INDEX

32
(FIVE YEARS 5)

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Giuseppe Gaetano Luciano

AbstractThe Generalized Uncertainty Principle (GUP) naturally emerges in several quantum gravity models, predicting the existence of a minimal length at Planck scale. Here, we consider the quadratic GUP as a semiclassical approach to thermodynamic gravity and constrain the deformation parameter by using observational bounds from Big Bang Nucleosynthesis and primordial abundances of the light elements $${}^4 He, D, {}^7 Li$$ 4 H e , D , 7 L i . We show that our result fits with most of existing bounds on $$\beta $$ β derived from other cosmological studies.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 2995
Author(s):  
Alexander V. Shapovalov ◽  
Anton E. Kulagin

A semiclassical approach based on the WKB–Maslov method is developed for the kinetic ionization equation in dense plasma with approximations characteristic of metal vapor active media excited by a contracted discharge. We develop the technique for constructing the leading term of the semiclassical asymptotics of the Cauchy problem solution for the kinetic equation under the supposition of weak diffusion. In terms of the approach developed, the local cubic nonlinear term in the original kinetic equation is considered in a nonlocal form. This allows one to transform the nonlinear nonlocal kinetic equation to an associated linear partial differential equation with a given accuracy of the asymptotic parameter using the dynamical system of moments of the desired solution of the equation. The Cauchy problem solution for the nonlinear nonlocal kinetic equation can be obtained from the solution of the associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation. Within the developed approach, the plasma relaxation in metal vapor active media is studied with asymptotic solutions expressed in terms of higher transcendental functions. The qualitative analysis of such the solutions is given.


2021 ◽  
Author(s):  
Sohan Sengupta

Abstract Quantum Fluids follow Quantum Dynamical Equation(s), which were not known till date. There exist a set of two equations, that is semiclassical approach to Quantum Fluids called Madelung’s Equations. But a new fully quantum variant of Madelung’s Equations when embedded in the Schrodinger Equation is gives full description of evolution of Quantum fluid with respect to time and position. The equation presented in this article has two unknown variables, one is density and other is velocity field as a function of spatial and time coordinates. The equation presented in this article, is derived from Schrodinger Equation, obeying Continuity equation, and Navier Strokes Equation. Bohm’s potential were externally added in Madeline’s equation. But the new equation which is fully quantum mechanical in nature; Bohm’s potential appears out of the equation, which is interesting to observe. Astrophysical cold stellar dynamics and condensed fluids have the main application of this equation. Quantum fluids show strange behaviour when compared to normal fluids. It is also shown that quantum fluid also have spins which has no classical analog.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 104
Author(s):  
Dmitry N. Voskresensky

The instability of electron-positron vacuum in strong electric fields is studied. First, falling to the Coulomb center is discussed at Z>137/2 for a spinless boson and at Z>137 for electron. Subsequently, focus is concentrated on description of deep electron levels and spontaneous positron production in the field of a finite-size nucleus with the charge Z>Zcr≃170. Next, these effects are studied in application to the low-energy heavy-ion collisions. Subsequently, we consider phenomenon of “electron condensation” on levels of upper continuum crossed the boundary of the lower continuum ϵ=−m in the field of a supercharged nucleus with Z≫Zcr. Finally, attention is focused on many-particle problems of polarization of the quantum electrodynamics (QED) vacuum and electron condensation at ultra-short distances from a source of charge. We argue for a principal difference of cases, when the size of the source is larger than the pole size rpole, at which the dielectric permittivity of the vacuum reaches zero and smaller rpole. Some arguments are presented in favor of the logical consistency of QED. All of the problems are considered within the same relativistic semiclassical approach.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Micheline B. Soley ◽  
Kobra N. Avanaki ◽  
Eric J. Heller

Author(s):  
E. V. Timoshchenko ◽  
V. A. Yurevich

Taking into account the ideas of the generalized two-level scheme, within the framework of the semiclassical approach to the consideration of the resonant interaction of the light field with matter, an analytical solution to the problem of the evolution of superradiance in a quasi-two-dimensional supercrystal formed by quantum dots is obtained. The calculation was carried out for the physical parameters of a semiconductor structure with quantum-well effects in the presence of resonant nonlinearity and intraband relaxation.


2020 ◽  
Vol 98 (11) ◽  
pp. 683-689
Author(s):  
Ekwevugbe Omugbe

The low- and high-lying rovibrational energy levels of the Schrodinger equation with the molecular Tietz–Hua potential are obtained via the Wentzel–Kramers–Brilluoin (WKB) quantization approach. The Pekeris-type approximation scheme is applied to deal with the orbital centrifugal term of the effective potential function. The obtained energy spectra and the rotational–vibrational (rovibrational) coefficients for [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] diatomic molecules were compared with the ones obtained by other analytical methods and available experimental data in the literature. The results revealed that the accuracy of the energy spectra for the high-lying rovibrational quantum states may depend on the rotational-vibrational constants.


2020 ◽  
Vol 29 (10) ◽  
pp. 3-8
Author(s):  
Minkyu PARK ◽  
Sung-Hyon RHIM

Spintronics is a research field that utilizes the electronic-spin degree of freedom beyond electronics that uses the charge of electrons. Recently, an attempt was made to extend this to include the orbital angular momentum of electrons, and that is called orbitronics or spin-orbitronics. In this article, we review the semiclassical dynamics of a wave packet that describes electrons in solids under slowly varying electromagnetic fields. This will be used to explain the spin or orbital Hall effect, which is a fundamental phenomenon in spin-orbitronics. The presentation given here is simplified and its goal is to provide a warm-up for articles in this issue of Physics and High Technology.


Sign in / Sign up

Export Citation Format

Share Document