continuum theories
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 20)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Prince Sao Lahai

Abstract The purpose of the paper is to statistically examine the way knowledge management is done at Fourah Bay College in the improvement of library services with the aims of identifying the types of knowledge managed, facilities, equipment, and supplies; policies used to manage the knowledge; knowledge management acquisition skills; relevancy and challenges to managing knowledge at FBC library. The study was informed by the triangulation of the Staff and knowledge Continuum Theories which tend to fill the gap of Robertson and Brun(2021) who considered computer as explicit knowledge. But that gap was filled to indicate knowledge resided in computer as an implicit knowledge in this research. Data used for analysis were drawn from thirty-three(33) participants from six section with the use of questionnaires, personal interview and personal observations. A total of 33 questionnaires were returned in their complete forms and used for the analysis. Both descriptive and inferential statistics were performed by using SPSS version(16.0) to ascertain the relevance of managing knowledge at FBC library in enhancing efficient and effective service delivery. For inferential statistics both ANOVA and Chi-square hypothesis testing were used to test the variables. The key findings of the research revealed that FBC manages the different types of knowledge but the policies governing the management of knowledge are not popularized to staff to understand about the relevance of the management of knowledge at FBC library. For the ANOVA hypothesis testing, it revealed that the mean of the variables are not statistically different while the chi-square revealed that there is a statistical variance between the means of the variables. However, provision is made for further research to be done in order to complement this current research.


2021 ◽  
pp. xiv-25
Author(s):  
Robert W. Batterman

This chapter introduces a conception of the relative autonomy of upper-scale, continuum theories from lower-scale more fundamental molecular and atomic theories. It contrasts a notion of foundational philosophical problems with an understanding of autonomy and fundamentality. It lays out the key ingredients required to argue for a middle-out, mesoscale approach to many-body systems, including hydrodynamic descriptions, representative volume elements, and fluctuation and dissipation.


Author(s):  
Robert W. Batterman

This book focuses on a method for exploring, explaining, and understanding the behavior of large many-body systems. It describes an approach to non-equilibrium behavior that focuses on structures (represented by correlation functions) that characterize mesoscale properties of the systems. In other words, rather than a fully bottom-up approach, starting with the components at the atomic or molecular scale, the “hydrodynamic approach” aims to describe and account for continuum behaviors by largely ignoring details at the “fundamental” level. This methodological approach has its origins in Einstein’s work on Brownian motion. He gave what may be the first instance of “upscaling” to determine an effective (continuum) value for a material parameter—the viscosity. His method is of a kind with much work in the science of materials. This connection and the wide-ranging interdisciplinary nature of these methods are stressed. Einstein also provided the first expression of a fundamental theorem of statistical mechanics called the Fluctuation-Dissipation theorem. This theorem provides the primary justification for the hydrodynamic, mesoscale methodology. Philosophical consequences include an argument to the effect that mesoscale parameters can be the natural variables for characterizing many-body systems. Further, the book offers a new argument for why continuum theories (fluid mechanics and equations for the bending of beams) are still justified despite completely ignoring the fact that fluids and materials have lower scale structure. The book argues for a middle way between continuum theories and atomic theories. A proper understanding of those connections can be had when mesoscales are taken seriously.


Author(s):  
Joseph Anderson ◽  
Vignesh Vivekanandan ◽  
Peng Lin ◽  
Kyle Starkey ◽  
Yash Pachaury ◽  
...  

Abstract For the past century, dislocations have been understood to be the carriers of plastic deformation in crystalline solids. However, their collective behavior is still poorly understood. Progress in understanding the collective behavior of dislocations has primarily come in one of two modes: the simulation of systems of interacting discrete dislocations and the treatment of density measures of varying complexity which are considered as continuum fields. A summary of contemporary models of continuum dislocation dynamics is presented. This includes, in order of complexity, the two-dimensional statistical theory of dislocations, the field dislocation mechanics treating the total Kroner-Nye tensor, vector density approaches which treat geometrically necessary dislocations on each slip system of a crystal, and high-order theories which examine the effect of dislocation curvature and distribution over orientation. Each of theories contain common themes, including statistical closure of the kinetic dislocation transport equations and treatment of dislocation reactions such as junction formation. An emphasis is placed on how these common themes rely on closure relations obtained by analysis of discrete dislocation dynamics experiments. The outlook of these various continuum theories of dislocation motion is then discussed.


2021 ◽  
Author(s):  
Subhadip Biswas ◽  
Buddhapriya Chakrabarti

We study equilibrium shapes and shape transformations of a confined semiflexible chain inside a soft lipid tubule using simulations and continuum theories. The deformed tubular shapes and chain conformations depend on the relative magnitude of their bending moduli. We characterise the collapsed macromolecular shapes by computing statistical quantities that probe the polymer properties at small length scales and report a prolate to toroidal coil transition for stiff chains. Deformed tubular shapes, calculated using elastic theories, agree with simulations. In conjunction with scattering studies, our work may provide a mechanistic understanding of gene encapsulation in soft structures.


2021 ◽  
Author(s):  
Nidhin Thomas ◽  
Ashutosh Agrawal

Lipid bilayers behave as 2D dielectric materials that undergo polarization and deformation in the presence of an electric field. This effect has been previously modeled by continuum theories which assume a polarization field oriented normal to the membrane surface. However, the molecular architecture of the lipids reveals that the heqadgroup dipoles are primarily oriented tangential to the membrane surface. Here, we perform atomistic and coarse-grained molecular dynamics simulations to quantify the in-plane polarization undergone by a flat bilayer and a spherical vesicle in the presence of an applied electric field. We use these predictions to compute an effective in-plane flexoelectric coefficient for four different lipid types. Our findings provide the first molecular proof of the in-plane polarization undergone by lipid bilayers and furnish the material parameter required to quantify membrane-electric field interactions.


2021 ◽  
Vol 249 ◽  
pp. 03024
Author(s):  
Patrick Richard ◽  
Alexandre Valance ◽  
Renaud Delannay

We report numerical simulations of surface granular flows confined between two sidewalls. These systems exhibit both very slow and very energetic flows. Zhu et al. [1] have shown that in energetic confined systems, the Froude number at sidewalls and the sidewall effective friction coefficient are linked through a unique relation. We show that this relation is also valid for creep flows. It is independent of the angle of the flow but depends on the sidewall-grain friction coefficient. Our results shed light on boundary conditions that have to be used at sidewalls in continuum theories aiming to capture the behavior of granular systems from creeping to energetic flows.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Ravi Sudam Jadhav ◽  
Amit Agrawal

Abstract In our earlier work (Jadhav, and Agrawal, 2020, “Grad's second problem and its solution within the framework of Burnett hydrodynamics,” ASME J. Heat Transfer, 142(10), p. 102105), we proposed Grad's second problem (examination of steady-state solution for a gas at rest upon application of a one-dimensional heat flux) as a potential benchmark problem for testing the accuracy of different higher order continuum theories and solved the problem within the framework of Burnett hydrodynamics. In this work, we solve this problem within the moment framework and also examine two variants, Bhatnagar–Gross–Krook (BGK)–Burnett and regularized 13 moment equations, for this problem. It is observed that only the conventional form of Burnett equations which are derived retaining the full nonlinear collision integral are able to capture nonuniform pressure profile observed in case of hard-sphere molecules. On the other hand, BGK–Burnett equations derived using BGK-kinetic model predict uniform pressure profile in both the cases. It seems that the variants based on BGK-kinetic model do not distinguish between hard-sphere and Maxwell molecules at least for the problem considered. With respect to moment equations, Grad 13 and regularized 13 moment equations predict consistent results for Maxwell molecules. However, for hard-sphere molecules, since the exact closed form of moment equations is not known, it is difficult to comment upon the results of moment equations for hard-sphere molecules. The present results for this relatively simple problem provide valuable insights into the nature of the equations and important remarks are made in this context.


Sign in / Sign up

Export Citation Format

Share Document