harmonic approximation
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 116)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Vol 11 ◽  
Author(s):  
Yanqiu Liu ◽  
Xiangong Hu ◽  
Mengxiang Chu ◽  
Hongbo Guo ◽  
Jingjing Yu ◽  
...  

X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality in optical molecular imaging, which has attracted more attention and has been widely studied. In XLCT, the accuracy and operational efficiency of an optical transmission model play a decisive role in the rapid and accurate reconstruction of light sources. For simulation of optical transmission characteristics in XLCT, considering the limitations of the diffusion equation (DE) and the time and memory costs of simplified spherical harmonic approximation equation (SPN), a hybrid light transport model needs to be built. DE and SPN models are first-order and higher-order approximations of RTE, respectively. Due to the discontinuity of the regions using the DE and SPN models and the inconsistencies of the system matrix dimensions constructed by the two models in the solving process, the system matrix construction of a hybrid light transmission model is a problem to be solved. We provided a new finite element mesh regrouping strategy-based hybrid light transport model for XLCT. Firstly, based on the finite element mesh regrouping strategy, two separate meshes can be obtained. Thus, for DE and SPN models, the system matrixes and source weight matrixes can be calculated separately in two respective mesh systems. Meanwhile, some parallel computation strategy can be combined with finite element mesh regrouping strategy to further save the system matrix calculation time. Then, the two system matrixes with different dimensions were coupled though repeated nodes were processed according to the hybrid boundary conditions, the two meshes were combined into a regrouping mesh, and the hybrid optical transmission model was established. In addition, the proposed method can reduce the computational memory consumption than the previously proposed hybrid light transport model achieving good balance between computational accuracy and efficiency. The forward numerical simulation results showed that the proposed method had better transmission accuracy and achieved a balance between efficiency and accuracy. The reverse simulation results showed that the proposed method had superior location accuracy, morphological recovery capability, and image contrast capability in source reconstruction. In-vivo experiments verified the practicability and effectiveness of the proposed method.


Author(s):  
Jizhou Wu ◽  
Felipe J González-Cataldo ◽  
Francois Soubiran ◽  
Burkhard Militzer

Abstract We perform ab initio simulations of beryllium (Be) and magnesium oxide (MgO) at megabar pressures and compare their structural and thermodynamic properties. We make a detailed comparison of our two recently derived phase diagrams of Be [Wu et al., Phys. Rev. B 104, 014103 (2021)] and MgO [Soubiran and Militzer, Phys. Rev. Lett. 125, 175701 (2020)] using the thermodynamic integration technique, as they exhibit striking similarities regarding their shape. We explore whether the Lindemann criterion can explain the melting temperatures of these materials through the calculation of the Debye temperature at high pressure. From our free energy calculations, we obtained a melting curve for Be that is well represented by the fit Tm(P) = 1564K*[1 + P/(15.8037 GPa)]^0.414 , and a melting line of MgO, which can be well reproduced by the fit Tm(P) = 3010K*(1 + P/a)^(1/c) with a = 10.5797 GPa and c = 2.8683 for the B1 phase and a = 26.1163 GPa and c = 2.2426 for the B2 phase. Both materials exhibit negative Clapeyron slopes on the boundaries between the two solid phases that are strongly affected by anharmonic effects, which also influences the location of the solid-solid-liquid triple point. We find that the quasi-harmonic approximation underestimates the stability range of the low-pressure phases, namely hcp for Be and B1 for MgO. We also compute the phonon dispersion relations at low and high pressure for each of the phases of these materials, and also explore how the phonon density of states is modified by temperature. Finally, we derive secondary shock Hugoniot curves in addition to the principal Hugoniot curve for both materials, and study their offsets in pressure between solid and liquid branches.


2022 ◽  
Vol 11 (2) ◽  
pp. 273-282
Author(s):  
Xinxin Qi ◽  
Weilong Yin ◽  
Sen Jin ◽  
Aiguo Zhou ◽  
Xiaodong He ◽  
...  

AbstractMo2Ga2C is a new MAX phase with a stacking Ga-bilayer as well as possible unusual properties. To understand this unique MAX phase structure and promote possible future applications, the structure, chemical bonding, and mechanical and thermodynamic properties of Mo2Ga2C were investigated by first-principles. Using the “bond stiffness” model, the strongest covalent bonding (1162 GPa) was formed between Mo and C atoms in Mo2Ga2C, while the weakest Ga-Ga (389 GPa) bonding was formed between two Ga-atomic layers, different from other typical MAX phases. The ratio of the bond stiffness of the weakest bond to the strongest bond (0.33) was lower than 1/2, indicating the high damage tolerance and fracture toughness of Mo2Ga2C, which was confirmed by indentation without any cracks. The high-temperature heat capacity and thermal expansion of Mo2Ga2C were calculated in the framework of quasi-harmonic approximation from 0 to 1300 K. Because of the metal-like electronic structure, the electronic excitation contribution became more significant with increasing temperature above 300 K.


2022 ◽  
Author(s):  
Matthias Agne ◽  
Shashwat Anand ◽  
Jeffrey Snyder

Abstract Atomic vibrations, in the form of phonons, are foundational in describing the thermal behavior of materials. The possible frequencies of phonons in materials are governed by the complex bonding between atoms, which is physically represented by a spring-mass model that can account for interactions (spring forces) between the atoms (masses). The lowest order, harmonic, approximation only considers linear forces between atoms and is thought incapable of explaining phenomena like thermal expansion and thermal conductivity, which are attributed to non-linear, anharmonic, interactions. Here we show that the kinetic energy of atoms in a solid produces a pressure much like the kinetic energy of atoms in a gas does. This vibrational or phonon pressure naturally increases with temperature, as it does in a gas, and therefore results in a thermal expansion. Because thermal expansion thermodynamically defines a Grüneisen parameter, which is a typical metric of anharmonicity, we show that even a harmonic solid will necessarily have some anharmonicity. A consequence of this phonon pressure model is a harmonic estimation of the Grüneisen parameter from the ratio of the transverse and longitudinal speeds of sound. We demonstrate the immediate utility of this model by developing a high-throughput harmonic estimate of lattice thermal conductivity that is comparable to other state-of-the-art estimations. By linking harmonic and anharmonic properties explicitly, this study provokes new ideas about the fundamental nature of anharmonicity, while also providing a basis for new materials engineering design metrics.


2022 ◽  
Vol 9 ◽  
Author(s):  
Marta Chołuj ◽  
Josep M. Luis ◽  
Wojciech Bartkowiak ◽  
Robert Zaleśny

Infrared (IR) spectroscopy is commonly used in chemical laboratories to study the geometrical structure of molecules and molecular complexes. The analysis of experimental IR spectra can nowadays be reliably supported by the results of quantum-chemical computations as vibrational frequencies and corresponding vibrational transition intensities are routinely calculated using harmonic approximation by virtually all quantum chemistry packages. In the present study we combine the methodology of computing vibrational spectra using high-level electron correlation treatments with an analytical potential-based approach to take into account spatial confinement effects. Using this approach, we perform a pioneering analysis of the impact of the spatial confinement caused by a cylindrical harmonic oscillator potential on the harmonic vibrational transition intensities and frequencies of two hydrogen-bonded complexes: HCN…HCN and HCN…HNC. The emphasis is put on the largest-intensity bands, which correspond to the stretching vibrations. The obtained results demonstrate that embedding the molecular complexes in an external confining potential causes significant changes of transition intensities and vibrational frequencies.


2022 ◽  
Author(s):  
Maxime Ducamp ◽  
François-Xavier Coudert

The use of machine learning for the prediction of physical and chemical properties of crystals based on their structure alone is currently an area of intense research in computational materials science. In this work, we studied the possibility of using machine learning-trained algorithms in order to calculate the thermal properties of siliceous zeolite frameworks. We used as training data the thermal properties of 120 zeolites, calculated at the DFT level, in the quasi-harmonic approximation. We compared the statistical accuracy of trained models (based on the gradient boosting regression technique) using different types of descriptors, including ad hoc geometrical features, topology, pore space, and general geometric descriptors. While geometric descriptors were found to perform best, we also identified limitations on the accuracy of the predictions, especially for a small group of materials with very highly negative thermal expansion coefficients. We then studied the generalizability of the technique, demonstrating that the predictions were not sensitive to the refinement of framework structures at a high level of theory. Therefore, the models are suitable for the exploration and screening of large-scale databases of hypothetical frameworks, which we illustrate on the PCOD2 database of zeolites containing around 600,000 hypothetical structures.


2021 ◽  
Vol 14 (1) ◽  
pp. 377
Author(s):  
Mouncif Arazi ◽  
Alireza Payman ◽  
Mamadou Baïlo Camara ◽  
Brayima Dakyo

In this paper, a bidirectional zero voltage switching (ZVS) resonant converter with narrow control frequency deviation is proposed. Wide input–output voltage range applications, such as flywheel or supercapacitors storage units are targeted. Due to symmetrical topology of resonant circuit interfaces, the proposed converter has similar behavior in bidirectional operating mode. We call it Dual Active Bridge Converter (DABC). The proposal topology of the converter is subjected to multi resonant circuits which make it necessary to study with multiscale approaches. Thus, first harmonic approximation and use of selective per unit parameters are established in (2) Methods. Then, the forward direction and backward direction of power flux exchange are detailed according to switching sequences. Switching frequency control must be completed within a narrow range. So, the frequency range deterministic parameters are emphasized in the design procedure in (3) Methods. A narrow range of switching frequency and a wide range voltage control must be ensured to suit for energy storage units, power electronic devices capabilities and electromagnetic compatibility. A 3 kW test bench is used to validate operation principles and to proof success of the developed design procedure. The interest of proposed converter is compared to other solutions from the literature in (4) Results.


2021 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Yiming Zhang ◽  
Zhiwei Shen ◽  
Yuanchao Wu ◽  
Hui Wang ◽  
Wenbin Pan

Wireless power transfer (WPT) for electric vehicles is an emerging technology and a future trend. To increase power density, the coupling coefficient of coils can be designed to be large, forming a strongly coupled WPT system, different from the conventional loosely coupled WPT system. In this way, the power density and efficiency of the WPT system can be improved. This paper investigates the dual-side phase-shift control of the strongly coupled series–series compensated WPT systems. The mathematical models based on the conventional first harmonic approximation and differential equations for the dual-side phase-shift control are built and compared. The dual-side phase-shift angle and its impact on the power transfer direction and soft switching are investigated. It is found that synchronous rectification at strong couplings can lead to hard switching because the dual-side phase shift in this case is over 90°. In comparison, a relatively high efficiency and soft switching can be realized when the dual-side phase shift is below 90°. The experimental results have validated the analysis.


2021 ◽  
Author(s):  
Maxime Ducamp ◽  
François-Xavier Coudert

The use of machine learning for the prediction of physical and chemical properties of crystals based on their structure alone is currently an area of intense research in computational materials science. In this work, we studied the possibility of using machine learning-trained algorithms in order to calculate the thermal properties of siliceous zeolite frameworks. We used as training data the thermal properties of 120 zeolites, calculated at the DFT level, in the quasi-harmonic approximation. We compared the statistical accuracy of trained models (based on the gradient boosting regression technique) using different types of descriptors, including ad hoc geometrical features, topology, pore space, and general geometric descriptors. While geometric descriptors were found to perform best, we also identified limitations on the accuracy of the predictions, especially for a small group of materials with very highly negative thermal expansion coefficients. We then studied the generalizability of the technique, demonstrating that the predictions were not sensitive to the refinement of framework structures at a high level of theory. Therefore, the models are suitable for the exploration and screening of large-scale databases of hypothetical frameworks, which we illustrate on the PCOD2 database of zeolites containing around 600,000 hypothetical structures.


2021 ◽  
Vol 2021 (3) ◽  
pp. 38-47
Author(s):  
D. A. Zakarian ◽  
◽  
A. V. Khachatrian ◽  

To calculate the linear coefficient of thermal expansion (LCTE) and its temperature dependence, a combination of the method of a priori pseudopotential and quasi-harmonic approximation (author's methods) is used. After approximating the results obtained for metal-like materials (carbides, borides, silicides), the LCTE is presented in an analytical form. In the case of quasi-binary eutectic systems based on carbides, borides, silicides, to estimate the interaction energy of the elements of two components, the concept of a virtual crystal (with a virtual cell) along the line of contact of two components is introduced. A virtual cell is assigned a volume average between the volume of a unit cell of two components, taking into account their concentration ratio. The components that make up the eutectic retain their crystal structure, their LCTE can be estimated as for pure components. Without taking into account the influence of interphase interaction, the LCTE of the eutectic system is determined using the rule of mixtures based on the LCTE components, taking into account their volume fraction. Taking into account the influence of the interface on thermal expansion is estimated by the virtual cell assigned to it. To determine the LCTE of the eutectic system, a ratio is proposed that connects the LCTE components and the docking boundaries through the concentration ratio. This method more realistically describes the structure of a quasi-binary eutectic. There is a consistency between the calculated and experimental data. Keywords: electron-ion system energy, interatomic interaction potential, quasiharmonic approximation, linear coefficient of thermal expansion, eutectic temperature.


Sign in / Sign up

Export Citation Format

Share Document