scholarly journals A uniform finite element method for a conservative singularly perturbed problem

1987 ◽  
Vol 18 (2) ◽  
pp. 163-174 ◽  
Author(s):  
Eugene O'Riordan ◽  
Martin Stynes
2017 ◽  
Vol 10 (1) ◽  
pp. 44-64 ◽  
Author(s):  
Yunhui Yin ◽  
Peng Zhu ◽  
Bin Wang

AbstractIn this paper, a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection – diffusion problem is analyzed. The method is shown to be convergent uniformly in the perturbation parameter ∈ provided only that ∈ ≤ N–1. An convergent rate in a discrete streamline-diffusion norm is established under certain regularity assumptions. Finally, through numerical experiments, we verified the theoretical results.


2017 ◽  
Vol 17 (2) ◽  
pp. 337-349 ◽  
Author(s):  
Christos Xenophontos

AbstractWe consider fourth order singularly perturbed problems in one-dimension and the approximation of their solution by the h version of the finite element method. In particular, we use piecewise Hermite polynomials of degree ${p\geq 3}$ defined on an exponentially graded mesh. We show that the method converges uniformly, with respect to the singular perturbation parameter, at the optimal rate when the error is measured in both the energy norm and a stronger, ‘balanced’ norm. Finally, we illustrate our theoretical findings through numerical computations, including a comparison with another scheme from the literature.


Sign in / Sign up

Export Citation Format

Share Document