interior layer
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 944 (1) ◽  
pp. 012053
Author(s):  
I Y Sani ◽  
A S Atmadipoera ◽  
A Purwandana ◽  
F Syamsudin

Abstract Along the pathway, ITF water is considered to be transformed due to strong diapycnal mixing. This study aims to describe the structure of ITF water and to estimate turbulent mixing. The number of 6 CTD casts and 9 repeated CTD “yoyo” measurements were obtained from the “Years of Maritime Continent” YMC cruise (a joint cruise between BPPT/IPB/UNUD-Univ. Tokyo/JAMSTEC) and onboard R.V. Baruna Jaya IV in August 2019. The CTD datasets are processed with SBE Data Processing and analyzed for water mass composition, as well as turbulent mixing with Thorpe method. The results showed that thermocline water of NPSW with S-max, and intermediate water of NPIW with S-min from North Pacific origin are dominant. Transformation of NPSW and NPIW along their pathway can be identified from decreasing S-max of NPSW and increasing S-min of NPIW. Estimates of ϵ and Kρ are O(10−5) m2s−2 and 10−2 m2 s−1, respectively. High mixing occur also in the interior layer with the e and the Kp O(10−6) m2s−2 and O(10−1) m2 s−1, respectively. This is related to barotropic tidal activity that interacts with the bottom topography where there are many sills, causing the formation of strong baroclinic tides.


2021 ◽  
Vol 155 ◽  
pp. 106603
Author(s):  
Carla Viegas ◽  
Magdalena Twarużek ◽  
Marta Dias ◽  
Beatriz Almeida ◽  
Elisabete Carolino ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1123
Author(s):  
Tianlong Ma ◽  
Lin Zhang ◽  
Fujun Cao ◽  
Yongbin Ge

Boundary or interior layer problems of high-dimensional convection–diffusion equations have distinct asymmetry. Consequently, computational grid distributions and linear algebraic systems arising from finite difference schemes for them are also asymmetric. Numerical solutions for these kinds of problems are more complicated than those symmetric problems. In this paper, we extended our previous work on the partial semi-coarsening multigrid method combined with the high-order compact (HOC) difference scheme for solving the two-dimensional (2D) convection–diffusion problems on non-uniform grids to the three-dimensional (3D) cases. The main merit of the present method is that the multigrid method on non-uniform grids can be performed with a different number of grids in different coordinate axes, which is more efficient than the multigrid method on non-uniform grids with the same number of grids in different coordinate axes. Numerical experiments are carried out to validate the accuracy and efficiency of the present method. It is shown that, without losing the high precision, the present method is very effective to reduce computing cost by cutting down the number of grids in the direction(s) which does/do not contain boundary or interior layer(s).


2021 ◽  
Author(s):  
Burkhard Militzer ◽  
Sean Wahl ◽  
William Hubbard

<div><span>Since its arrival at Jupiter in 2016, the Juno spacecraft has measured the planet’s gravity fields with unprecedented precision. The interpretation of these measurements has been challenging because the magnitudes of the gravity coefficients J</span><sub>4</sub><span> and J</span><sub>6</sub><span> were smaller than predicted by traditional interiors models that included a dense inner core composed of rock and ice. Here we instead present models with dilute cores [Geophys. Res. Lett. 44 (2017) 4649] and deep-winds that conform to theoretical predictions of hydrogen-helium phase separation in the interior layer from approximately 0.8 to 0.85 Jupiter radii. Such models match the entire set of zonal gravity measurements by the Juno spacecraft. Our work is based on the accelerated version of the Concentric Maclaurin Spheroid method [Astrophysical J. </span><strong>879</strong><span> (2019) 78]. We conclude by comparing with models for Saturn’s interior. </span></div>


Sign in / Sign up

Export Citation Format

Share Document