singularly perturbed problems
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 45)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 61 (12) ◽  
pp. 2068-2087
Author(s):  
N. N. Nefedov

Abstract This work presents a review and analysis of modern asymptotic methods for analysis of singularly perturbed problems with interior and boundary layers. The central part of the work is a review of the work of the author and his colleagues and disciples. It highlights boundary and initial-boundary value problems for nonlinear elliptic and parabolic partial differential equations, as well as periodic parabolic problems, which are widely used in applications and are called reaction–diffusion and reaction–diffusion–advection equations. These problems can be interpreted as models in chemical kinetics, synergetics, astrophysics, biology, and other fields. The solutions of these problems often have both narrow boundary regions of rapid change and inner layers of various types (contrasting structures, moving interior layers: fronts), which leads to the need to develop new asymptotic methods in order to study them both formally and rigorously. A general scheme for a rigorous study of contrast structures in singularly perturbed problems for partial differential equations, based on the use of the asymptotic method of differential inequalities, is presented and illustrated on relevant problems. The main achievements of this line of studies of partial differential equations are reflected, and the key directions of its development are indicated.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jagbir Kaur ◽  
Vivek Sangwan

As it is well recognized that conventional numerical schemes are inefficient in approximating the solutions of the singularly perturbed problems (SPP) in the boundary layer region, in the present work, an effort has been made to propose a robust and efficient numerical approach known as element-free Galerkin (EFG) technique to capture these solutions with a high precision of accuracy. Since a lot of weight functions exist in the literature which plays a crucial role in the moving least square (MLS) approximations for generating the shape functions and hence affect the accuracy of the numerical solution, in the present work, due emphasis has been given to propose a robust weight function for the element-free Galerkin scheme for SPP. The key feature of nonrequirement of elements or node connectivity of the EFG method has also been utilized by proposing a way to generate nonuniformly distributed nodes. In order to verify the computational consistency and robustness of the proposed scheme, a variety of linear and nonlinear numerical examples have been considered and L ∞ errors have been presented. Comparison of the EFG solutions with those available in the literature depicts the superiority of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document