Some q-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths

1993 ◽  
Vol 34 (1) ◽  
pp. 35-55 ◽  
Author(s):  
Joseph Bonin ◽  
Louis Shapiro ◽  
Rodica Simion
10.37236/7375 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Nicholas R. Beaton ◽  
Mathilde Bouvel ◽  
Veronica Guerrini ◽  
Simone Rinaldi

We provide a new succession rule (i.e. generating tree) associated with Schröder numbers, that interpolates between the known succession rules for Catalan and Baxter numbers. We define Schröder and Baxter generalizations of parallelogram polyominoes, called slicings, which grow according to these succession rules. In passing, we also exhibit Schröder subclasses of Baxter classes, namely a Schröder subset of triples of non-intersecting lattice paths, a new Schröder subset of Baxter permutations, and a new Schröder subset of mosaic floorplans. Finally, we define two families of subclasses of Baxter slicings: the $m$-skinny slicings and the $m$-row-restricted slicings, for $m \in \mathbb{N}$. Using functional equations and the kernel method, their generating functions are computed in some special cases, and we conjecture that they are algebraic for any $m$.


10.37236/1807 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert A. Sulanke

Let ${\cal C}(d,n)$ denote the set of $d$-dimensional lattice paths using the steps $X_1 := (1, 0, \ldots, 0),$ $ X_2 := (0, 1, \ldots, 0),$ $\ldots,$ $ X_d := (0,0, \ldots,1)$, running from $(0,\ldots,0)$ to $(n,\ldots,n)$, and lying in $\{(x_1,x_2, \ldots, x_d) : 0 \le x_1 \le x_2 \le \ldots \le x_d \}$. On any path $P:=p_1p_2 \ldots p_{dn} \in {\cal C}(d,n)$, define the statistics ${\rm asc}(P) := $$|\{i : p_ip_{i+1} = X_jX_{\ell}, j < \ell \}|$ and ${\rm des}(P) := $$|\{i : p_ip_{i+1} = X_jX_{\ell}, j>\ell \}|$. Define the generalized Narayana number $N(d,n,k)$ to count the paths in ${\cal C}(d,n)$ with ${\rm asc}(P)=k$. We consider the derivation of a formula for $N(d,n,k)$, implicit in MacMahon's work. We examine other statistics for $N(d,n,k)$ and show that the statistics ${\rm asc}$ and ${\rm des}-d+1$ are equidistributed. We use Wegschaider's algorithm, extending Sister Celine's (Wilf-Zeilberger) method to multiple summation, to obtain recurrences for $N(3,n,k)$. We introduce the generalized large Schröder numbers $(2^{d-1}\sum_k N(d,n,k)2^k)_{n\ge1}$ to count constrained paths using step sets which include diagonal steps.


10.37236/1385 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Robert A. Sulanke

Consider lattice paths in Z$^2$ with three step types: the up diagonal $(1,1)$, the down diagonal $(1,-1)$, and the double horizontal $(2,0)$. For $n \geq 1$, let $S_n$ denote the set of such paths running from $(0,0)$ to $(2n,0)$ and remaining strictly above the x-axis except initially and terminally. It is well known that the cardinalities, $r_n = |S_n|$, are the large Schröder numbers. We use lattice paths to interpret bijectively the recurrence $ (n+1) r_{n+1} = 3(2n - 1) r_{n} - (n-2) r_{n-1}$, for $n \geq 2$, with $r_1=1$ and $r_2=2$. We then use the bijective scheme to prove a result of Kreweras that the sum of the areas of the regions lying under the paths of $S_n$ and above the x-axis, denoted by $AS_n$, satisfies $ AS_{n+1} = 6 AS_n - AS_{n-1}, $ for $n \geq 2$, with $AS_1 =1$, and $AS_2 =7$. Hence $AS_n = 1, 7, 41, 239 ,1393, \ldots$. The bijective scheme yields analogous recurrences for elevated Catalan paths.


10.37236/1915 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Sen-Peng Eu ◽  
Tung-Shan Fu

Based on a bijection between domino tilings of an Aztec diamond and non-intersecting lattice paths, a simple proof of the Aztec diamond theorem is given by means of Hankel determinants of the large and small Schröder numbers.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Mathilde Bouvel ◽  
Veronica Guerrini ◽  
Simone Rinaldi

International audience We provide a new succession rule (i.e. generating tree) associated with Schröder numbers, that interpolates between the known succession rules for Catalan and Baxter numbers. We define Schröder and Baxter generalizations of parallelogram polyominoes (called slicings) which grow according to these succession rules. We also exhibit Schröder subclasses of Baxter classes, namely a Schröder subset of triples of non-intersecting lattice paths, and a new Schröder subset of Baxter permutations.


2017 ◽  
Vol Vol. 18 no. 2, Permutation... (Permutation Patterns) ◽  
Author(s):  
Michael W. Schroeder ◽  
Rebecca Smith

We consider a sorting machine consisting of two stacks in series where the first stack has the added restriction that entries in the stack must be in decreasing order from top to bottom. The class of permutations sortable by this machine are known to be enumerated by the Schröder numbers. In this paper, we give a bijection between these sortable permutations of length $n$ and Schröder paths -- the lattice paths from $(0,0)$ to $(n-1,n-1)$ composed of East steps $(1,0)$, North steps $(0,1)$, and Diagonal steps $(1,1)$ that travel weakly below the line $y=x$.


2021 ◽  
Vol 94 ◽  
pp. 103310
Author(s):  
Nancy S.S. Gu ◽  
Helmut Prodinger
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document