Hair cell regeneration in the European starling (Sturnus vulgaris): Recovery of pure-tone detection thresholds

1993 ◽  
Vol 71 (1-2) ◽  
pp. 125-136 ◽  
Author(s):  
G.Cameron Marean ◽  
John M. Burt ◽  
Michael D. Beecher ◽  
Edwin W. Rubel
1992 ◽  
Vol 102 (4) ◽  
pp. 671-680 ◽  
Author(s):  
J.S. Stone ◽  
D.A. Cotanche

Pure-tone overstimulation for prolonged time leads to hair cell death in frequency-specific regions of the cochlear epithelium. Unlike mammals, birds replace missing hair cells by stimulating mitosis in an uncharacterized precursor cell. Regenerated hair cells, initially identifiable by their immature stereocilia and small surface areas, differentiate into mature cells in a manner which parallels embryonic development. In the current study, we examined whether hair cell regeneration is initiated during noise exposure or after the end of acoustic trauma. We exposed 7-to 15-day-old chicks to a 1500 Hz pure tone at 120 dB SPL (re 20 muPa) for 4, 12, and 24 hours and examined the recovering cochlear epithelium with scanning electron microscopy to determine when regenerated hair cells were first identifiable. The earliest evidence of new hair cells appeared roughly 96 hours after the onset of 4-, 12-, and 24-hour exposures. Our previous studies initially identified new hair cells 96 hours after the start of a 48-hour exposure. Therefore, hair cell regeneration follows a similar time course relative to the onset of noise exposure, regardless of the ultimate duration of exposure. Since we estimate that hair cells take at least 48 hours after their genesis to form immature stereocilia, the signal which induces hair cell precursors to re-enter the cell cycle and to divide probably has its initial effects very early during the exposure period. (A previous report of these data was given at the 1991 American Society for Cell Biology conference.)


1994 ◽  
Vol 111 (3) ◽  
pp. 281-301 ◽  
Author(s):  
T TSUE ◽  
E OESTERLE ◽  
E RUBEL

The Lancet ◽  
1995 ◽  
Vol 346 (8971) ◽  
pp. 325-326 ◽  
Author(s):  
KarenP. Steel

Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 961-973 ◽  
Author(s):  
J.S. Stone ◽  
E.W. Rubel

Postembryonic production of hair cells, the highly specialized receptors for hearing, balance and motion detection, occurs in a precisely controlled manner in select species, including avians. Notch1, Delta1 and Serrate1 mediate cell specification in several tissues and species. We examined expression of the chicken homologs of these genes in the normal and drug-damaged chick inner ear to determine if signaling through this pathway changes during hair cell regeneration. In untreated post-hatch chicks, Delta1 mRNA is abundant in a subpopulation of cells in the utricle, which undergoes continual postembryonic hair cell production, but it is absent from all cells in the basilar papilla, which is mitotically quiescent. By 3 days after drug-induced hair cell injury, Delta1 expression is highly upregulated in areas of cell proliferation in both the utricle and basilar papilla. Delta1 mRNA levels are elevated in progenitor cells during DNA synthesis and/or gap 2 phases of the cell cycle and expression is maintained in both daughter cells immediately after mitosis. Delta1 expression remains upregulated in cells that differentiate into hair cells and is downregulated in cells that do not acquire the hair cell fate. Delta1 mRNA levels return to normal by 10 days after hair cell injury. Serrate1 is expressed in both hair cells and support cells in the utricle and basilar papilla, and its expression does not change during the course of drug-induced hair cell regeneration. In contrast, Notch1 expression, which is limited to support cells in the quiescent epithelium, is increased in post-M-phase cell pairs during hair cell regeneration. This study provides initial evidence that Delta-Notch signaling may be involved in maintaining the correct cell types and patterns during postembryonic replacement of sensory epithelial cells in the chick inner ear.


Sign in / Sign up

Export Citation Format

Share Document