Effects of a variable parameter controller on the dynamic performance of an HVDC transmission system

1991 ◽  
Vol 21 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Abul R. Hasan ◽  
A.H.M.S. Ula
2019 ◽  
Vol 136 ◽  
pp. 02015
Author(s):  
Pengfei Zhao ◽  
Mingxing Guo ◽  
Xiaojun Tang ◽  
Yingpei Liu ◽  
Qidi Huo ◽  
...  

In the traditional double closed-loop control strategy for VSC-HVDC transmission system that supply power to passive networks, the control structure is complex, the PI parameters are more difficult, the tuning is slow, and the response speed is slow. Rectifier-side direct power control based on model prediction and direct AC voltage control strategy on inverter side are proposed. Based on the discrete mathematical model of the converter, the system output under all switching function combinations is calculated by the ergodic method, and the switching function that minimizes the objective function is selected to act on the inverter. The utility model has the advantages of simple structure, no complicated PI parameter setting, fast dynamic response, high voltage quality electric energy to the passive network, good steady state performance and dynamic performance. The simulation results verify the feasibility and effectiveness of the proposed control strategy.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


Sign in / Sign up

Export Citation Format

Share Document