Biomechanical comparison of pull-out strength of five suture anchor devices

1992 ◽  
Vol 8 (3) ◽  
pp. 399-400
2019 ◽  
Vol 7 (7_suppl5) ◽  
pp. 2325967119S0042
Author(s):  
Elan J. Golan ◽  
Nicholas Yohe ◽  
Ernest M. J. Schilders ◽  
Srino Bharam

Objectives: Acute avulsion of the proximal fibrocartilaginous origin of the adductor longus (AL) is an injury mostly occurring in individuals that perform cutting and rapid lateral movements such as in hockey, soccer, and rugby. Especially in competitive athletes, recent trends have advocated for surgical repair of these acute injuries. However, while multiple repair configurations have been proposed, the current literature lacks biomechanical data to guide surgical technique. Therefore, the purpose of this study was to determine load-to-failure values for two proximal adductor repair techniques and to compare their strength to that of a native, uninjured proximal adductor tendon. Methods: Seventeen cadaveric fresh frozen pelvic specimens were dissected to preserve the proximal adductor tendon and the fibrocartilage attachment to the pubis. The specimens were then divided into three groups: an intact AL tendon(baseline control), and ‘torn’ tendons repaired with either a 2-suture anchor or 4-suture anchor technique. Once repaired, specimens were cyclically loaded on a custom jig to simulate a maximal effort soccer-style kick. Testing endpoints included suture anchor pull-out, loss of clamp fixation, or catastrophic tendon failure. To control for individual differences, values were reported both in terms of gross force and as load-to-displacement ratios. Following collection, data from each of the three groups were recorded and analyzed via Kruskal-Wallis and multiple comparison tests. Results: The mean load to failure for the 4-anchor group was 83.74±19.28 N, which was significantly greater than for either the intact (25.43±3.46 N, p <0.05) or 2-anchor repair (20.58±1.33 N, p <0.001) conditions. All intact and 4-anchor repair specimens failed via disruption distal to the adductor’s musculotendinous junction, with no failure at the bone-anchor interface noted in either of these groups. In contrast, 80% of 2-anchor repairs failed at the bone to anchor interface. In this group, following initial pullout, failure of a secondary anchor occurred with 41.4% less force than for the index failure (p < 0.001). Conclusion: This study provides biomechanical data which identifies a 4-anchor repair as being much more resistant to surgical-site failure than a 2-anchor construct. Further, the 4-anchor group failed at the same anatomic location as the intact adductor group, suggesting that a 4-anchor construct results in a repair that acts similar to an uninjured control. Based on this finding, a 4-anchor repair construct should be preferentially used in proximal adductor repair whenever clinically feasible. [Figure: see text][Figure: see text]


2020 ◽  
Vol 54 (S1) ◽  
pp. 134-140
Author(s):  
Turgut Akgül ◽  
Murat Korkmaz ◽  
Tuna Pehlivanoglu ◽  
Serkan Bayram ◽  
Mustafa Abdullah Özdemir ◽  
...  

2013 ◽  
Vol 42 (1) ◽  
pp. 187-193 ◽  
Author(s):  
Matthias J. Feucht ◽  
Eduardo Grande ◽  
Johannes Brunhuber ◽  
Nikolaus Rosenstiel ◽  
Rainer Burgkart ◽  
...  

2009 ◽  
Vol 34 (5) ◽  
pp. 643-650 ◽  
Author(s):  
H. OMAE ◽  
C. ZHAO ◽  
Y.-L. SUN ◽  
M. E. ZOBITZ ◽  
S. L. MORAN ◽  
...  

The purpose of this study was to assess tendon metabolism and suture pull-out strength after simple tendon suture in a tissue culture model. One hundred and twelve flexor digitorum profundus tendons from 28 dogs were cultured for 7, 14, or 21 days with or without a static tensile load. In both groups increased levels of matrix metalloproteinase (MMP) mRNA was noted. Suture pull-out strength did not decrease during tissue culture. While the presence of a static load had no effect on the pull-out strength, it did affect MMP mRNA expression. This tissue culture model could be useful in studying the effect of factors on the tendon-suture interface.


2018 ◽  
Vol 30 (1) ◽  
pp. 67-74
Author(s):  
Mohamad WNN ◽  
Suliman NH ◽  
Kamarudin MK ◽  
Mohd-Amin N ◽  
Hassan R
Keyword(s):  
Pull Out ◽  

Sign in / Sign up

Export Citation Format

Share Document