In vitro micromass teratogen test: Interpretation of results from a blind trial of 25 compounds using three separate criteria

1990 ◽  
Vol 4 (4-5) ◽  
pp. 609-611 ◽  
Author(s):  
J.F. Parsons ◽  
J. Rockley ◽  
M. Richold
Author(s):  
Sandi L. Navarro ◽  
Marta Herrero ◽  
Helena Martinez ◽  
Yuzheng Zhang ◽  
Jon Ladd ◽  
...  

Background: Non-steroidal anti-inflammatory drugs, e.g., celecoxib, are commonly used for inflammatory conditions, but can be associated with adverse effects. Combined glucosamine hydrochloride plus chondroitin sulfate (GH+CS) are commonly used for joint pain and have no known adverse effects. Evidence from in vitro, animal and human studies suggest that GH+CS have anti-inflammatory activity, among other mechanisms of action. Objective: We evaluated the effects of GH+CS versus celecoxib on a panel of 20 serum proteins involved in inflammation and other metabolic pathways. Methods: Samples were from a randomized, parallel, double-blind trial of pharmaceutical grade 1500 mg GH + 1200 mg CS (n=96) versus 200 mg celecoxib daily (n=93) for 6- months in knee osteoarthritis (OA) patients. Linear mixed models adjusted for age, sex, body mass index, baseline serum protein values, and rescue medicine use assessed the intervention effects of each treatment arm adjusting for multiple testing. Results: All serum proteins except WNT16 were lower after treatment with GH+CS, while about half increased after celecoxib. Serum IL-6 was significantly reduced (by 9%, P=0.001) after GH+CS, and satisfied the FDR <0.05 threshold. CCL20, CSF3, and WNT16 increased after celecoxib (by 7%, 9% and 9%, respectively, P<0.05), but these serum proteins were no longer statistically significant after controlling for multiple testing. Conclusion: The results of this study using samples from a previously conducted trial in OA patients, demonstrate that GH+CS reduces circulating IL-6, an inflammatory cytokine, but is otherwise comparable to celecoxib with regard to effects on other circulating protein biomarkers.


2013 ◽  
Vol 59 (7) ◽  
pp. 1108-1117 ◽  
Author(s):  
Karl B Scheidweiler ◽  
David M Schwope ◽  
Erin L Karschner ◽  
Nathalie A Desrosiers ◽  
David A Gorelick ◽  
...  

BACKGROUND Blood and plasma cannabinoid stability is important for test interpretation and is best studied in authentic rather than fortified samples. METHODS Low and high blood and plasma pools were created for each of 10 participants after they smoked a cannabis cigarette. The stabilities of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), cannabinol (CBN), THC-glucuronide, and THCCOOH-glucuronide were determined after 1 week at room temperature; 1, 2, 4, 12, and 26 (±2) weeks at 4 °C; and 1, 2, 4, 12, 26 (±2), and 52 (±4) weeks at −20 °C. Stability was assessed by Friedman test. RESULTS Numbers of THC-glucuronide and CBD-positive blood samples were insufficient to assess stability. In blood, 11-OH-THC and CBN were stable for 1 week at room temperature, whereas THC and THCCOOH-glucuronide decreased and THCCOOH increased. In blood, THC, THCCOOH-glucuronide, THCCOOH, 11-OH-THC, and CBN were stable for 12, 4, 4, 12, and 26 weeks, respectively, at 4 °C and 12, 12, 26, 26, and 52 weeks at −20 °C. In plasma, THC-glucuronide, THC, CBN, and CBD were stable for 1 week at room temperature, whereas THCCOOH-glucuronide and 11-OH-THC decreased and THCCOOH increased. In plasma, THC-glucuronide, THC, THCCOOH-glucuronide, THCCOOH, 11-OH-THC, CBN, and CBD were stable for 26, 26, 2, 2, 26, 12, and 26 weeks, respectively, at 4 °C and 52, 52, 26, 26, 52, 52, and 52 weeks, respectively, at −20 °C. CONCLUSIONS Blood and plasma samples should be stored at −20 °C for no more than 3 and 6 months, respectively, to assure accurate cannabinoid quantitative results.


ARS Journal ◽  
1961 ◽  
Vol 31 (5) ◽  
pp. 595-599 ◽  
Author(s):  
DONNA PRICE ◽  
IRVING JAFFE

Sign in / Sign up

Export Citation Format

Share Document