Regeneration after peripheral nerve injury assessed with somatosensory evoked potentials in cats

1989 ◽  
Vol 9 ◽  
pp. 169
Author(s):  
Yoriko Kawakami ◽  
Hidehiro Suzuki ◽  
Willie K. Dong
2017 ◽  
Vol 32 (5) ◽  
pp. 897-906 ◽  
Author(s):  
Alexander W. Aleem ◽  
W. Bryan Wilent ◽  
Alexa C. Narzikul ◽  
Andrew F. Kuntz ◽  
Edward S. Chang ◽  
...  

2010 ◽  
Vol 112 (4) ◽  
pp. 880-889 ◽  
Author(s):  
Nina Kropf ◽  
Kartik Krishnan ◽  
Moses Chao ◽  
Mark Schweitzer ◽  
Zehava Rosenberg ◽  
...  

Object The 2 aims of this study were as follows: 1) to establish outcome measures of nerve regeneration in an axolotl model of peripheral nerve injury; and 2) to define the timing and completeness of reinnervation in the axolotl following different types of sciatic nerve injury. Methods The sciatic nerves in 36 axolotls were exposed bilaterally in 3 groups containing 12 animals each: Group 1, left side sham, right side crush; Group 2, left side sham, right side nerve resected and proximal stump buried; and Group 3 left side cut and sutured, right side cut and sutured with tibial and peroneal divisions reversed. Outcome measures included the following: 1) an axolotl sciatic functional index (ASFI) derived from video swim analysis; 2) motor latencies; and 3) MR imaging evaluation of nerve and muscle edema. Results For crush injuries, the ASFI returned to baseline by 2 weeks, as did MR imaging parameters and motor latencies. For buried nerves, the ASFI returned to 20% below baseline by 8 weeks, with motor evoked potentials present. On MR imaging, nerve edema peaked at 3 days postintervention and gradually normalized over 12 weeks, whereas muscle denervation was present until a gradual decrease was seen between 4 and 12 weeks. For cut nerves, the ASFI returned to 20% below baseline by Week 4, where it plateaued. Motor evoked potentials were observed at 2–4 weeks, but with an increased latency until Week 6, and MR imaging analysis revealed muscle denervation for 4 weeks. Conclusions Multiple outcome measures in which an axolotl model of peripheral nerve injury is used have been established. Based on historical controls, recovery after nerve injury appears to occur earlier and is more complete than in rodents. Further investigation using this model as a successful “blueprint” for nerve regeneration in humans is warranted.


2020 ◽  
Vol 15 (6) ◽  
pp. 522-530
Author(s):  
Jiawei Shu ◽  
Feng Cheng ◽  
Zhe Gong ◽  
Liwei Ying ◽  
Chenggui Wang ◽  
...  

Spinal cord injury (SCI) is different from peripheral nerve injury; it results in devastating and permanent damage to the spine, leading to severe motor, sensory and autonomic dysfunction. SCI produces a complex microenvironment that can result in hemorrhage, inflammation and scar formation. Not only does it significantly limit regeneration, but it also challenges a multitude of transplantation strategies. In order to promote regeneration, researchers have recently begun to focus their attention on strategies that manipulate the complicated microenvironment produced by SCI. And some have achieved great therapeutic effects. Hence, reconstructing an appropriate microenvironment after transplantation could be a potential therapeutic solution for SCI. In this review, first, we aim to summarize the influential compositions of the microenvironment and their different effects on regeneration. Second, we highlight recent research that used various transplantation strategies to modulate different microenvironments produced by SCI in order to improve regeneration. Finally, we discuss future transplantation strategies regarding SCI.


Sign in / Sign up

Export Citation Format

Share Document