Neurofibrillary tangles and β-amyloid deposits in Alzheimer's disease

1991 ◽  
Vol 1 (3) ◽  
pp. 441-447 ◽  
Author(s):  
Michel Goedert ◽  
Sangram S. Sisodia ◽  
Donald L. Price
2006 ◽  
Vol 155 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Lisa M. Miller ◽  
Qi Wang ◽  
Tejas P. Telivala ◽  
Randy J. Smith ◽  
Antonio Lanzirotti ◽  
...  

2015 ◽  
Vol 112 (28) ◽  
pp. E3699-E3708 ◽  
Author(s):  
Swetha Gowrishankar ◽  
Peng Yuan ◽  
Yumei Wu ◽  
Matthew Schrag ◽  
Summer Paradise ◽  
...  

Through a comprehensive analysis of organellar markers in mouse models of Alzheimer’s disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer’s disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer’s disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology.


CNS Spectrums ◽  
2005 ◽  
Vol 10 (S18) ◽  
pp. 13-16 ◽  
Author(s):  
Mark A. Mintun

AbstractAlzheimer's disease is a degenerative neurological condition characterized by the presence of β-amyloid plaques and neurofibrillary tangles in the limbic and neocortical regions of the brain. Pittsburgh Compound-B (PIB), a benzothiazole analog, has recently been found to specifically label amyloid deposits in positron emission tomography (PET) studies of the brain, opening the door for a wide range of applications related to Alzheimer's disease. In this article, data demonstrating the specificity of PIB as a PET tracer for β-amyloid lesions are reviewed, and the potential clinical applications of PIB PET imaging is discussed. Because amyloid plaques are common even in elderly individuals who are not suffering from dementia, the primary diagnostic function of PIB PET imaging presumably would be to rule out, rather than definitively confirm, Alzheimer's diagnoses in elderly patients. Other possible uses include monitoring plaque loads in patients receiving anti-amyloid therapy for Alzheimer's disease, as well as assessing plaque formation in unaffected individuals as a means of evaluating future Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document