Hydrothermal Alteration Processes in the Oceanic Crust

2003 ◽  
pp. 511-535 ◽  
Author(s):  
H. Staudigel
1978 ◽  
Vol 5 (12) ◽  
pp. 1009-1012 ◽  
Author(s):  
S. R. Hart ◽  
H. Staudigel

2021 ◽  
Author(s):  
◽  
Kartika Palupi Savitri

<p>Tompaso geothermal system is a typical volcanic arc geothermal system in North Sulawesi, Indonesia. Although situated close to the Tondano caldera, subsurface lithologies and structures do not show any evidence for caldera-related features and the system is inferred to be related to the andesitic Soputan volcano. The subsurface geology of Tompaso consists of Tuff B unit, Rhyolite unit, Andesite B unit, Pitchstone unit, Pyroclastic Breccia unit,Andesite A unit, Pumice unit, and Tuff A unit, respectively, from the oldest penetrated unit. The silicic Pitchstone and Rhyolite units are presumed to be sourced from the same magma chamber. Petrological and mineralogical observations using binocular and petrographic microscopy, short-wave infrared (SWIR) analysis, and back-scattered electron (BSE) imaging combined with energy dispersive X-ray spectroscopy (EDS) have been applied to cuttings and limited core material from three boreholes: LHD-26, LHD-27, and LHD-32. Age dating has not been undertaken and, thus, conclusions on correlations between subsurface geology inferred here with surface formation groupings from previous works cannot be drawn.  Tompaso geothermal system is characterised primarily by variations in the fracturing within the reservoir. Secondary mineralogy and the structure of present-day temperature of the system suggest that the movement of hydrothermal fluids at Tompaso is controlled by faults: the Soputan, Tempang, and A-A’ faults, the last defined for the first time in this thesis. Soputan Fault controls the outflow of the system. On the other hand, the influence of Tempang and A-A’ faults is dominant only in the upper portion of the system. The A-A’ fault likely acts as a channel for cooler meteoric surface water, while the Tempang Fault is inferred to have experienced self-sealing and appears to be an impermeable structure in the system. The self-sealing process of the Tempang Fault and/or the introduction of meteoric water through the A-A’ fault may be related to the cooling of the northern and western part of the system.  The challenges in identifying protoliths in active geothermal areas is addressed here through studies of the influence of andesite textures on the preferences of hydrothermal alteration processes. Wairakei andesites were chosen for comparison to Tompaso andesites, especially because of its different geological setting and geothermal reservoir structure. The results suggest that mineral composition and arrangement affect the preference of hydrothermal alteration on andesites.</p>


2021 ◽  
Author(s):  
◽  
Kartika Palupi Savitri

<p>Tompaso geothermal system is a typical volcanic arc geothermal system in North Sulawesi, Indonesia. Although situated close to the Tondano caldera, subsurface lithologies and structures do not show any evidence for caldera-related features and the system is inferred to be related to the andesitic Soputan volcano. The subsurface geology of Tompaso consists of Tuff B unit, Rhyolite unit, Andesite B unit, Pitchstone unit, Pyroclastic Breccia unit,Andesite A unit, Pumice unit, and Tuff A unit, respectively, from the oldest penetrated unit. The silicic Pitchstone and Rhyolite units are presumed to be sourced from the same magma chamber. Petrological and mineralogical observations using binocular and petrographic microscopy, short-wave infrared (SWIR) analysis, and back-scattered electron (BSE) imaging combined with energy dispersive X-ray spectroscopy (EDS) have been applied to cuttings and limited core material from three boreholes: LHD-26, LHD-27, and LHD-32. Age dating has not been undertaken and, thus, conclusions on correlations between subsurface geology inferred here with surface formation groupings from previous works cannot be drawn.  Tompaso geothermal system is characterised primarily by variations in the fracturing within the reservoir. Secondary mineralogy and the structure of present-day temperature of the system suggest that the movement of hydrothermal fluids at Tompaso is controlled by faults: the Soputan, Tempang, and A-A’ faults, the last defined for the first time in this thesis. Soputan Fault controls the outflow of the system. On the other hand, the influence of Tempang and A-A’ faults is dominant only in the upper portion of the system. The A-A’ fault likely acts as a channel for cooler meteoric surface water, while the Tempang Fault is inferred to have experienced self-sealing and appears to be an impermeable structure in the system. The self-sealing process of the Tempang Fault and/or the introduction of meteoric water through the A-A’ fault may be related to the cooling of the northern and western part of the system.  The challenges in identifying protoliths in active geothermal areas is addressed here through studies of the influence of andesite textures on the preferences of hydrothermal alteration processes. Wairakei andesites were chosen for comparison to Tompaso andesites, especially because of its different geological setting and geothermal reservoir structure. The results suggest that mineral composition and arrangement affect the preference of hydrothermal alteration on andesites.</p>


1999 ◽  
Vol 63 (6) ◽  
pp. 891-900 ◽  
Author(s):  
H. Ishizuka

AbstractPumpellyite has been found in doleritic basalt of a sheeted dyke complex drilled from 2072.1 m below sea floor in DSDP/ODP Hole 504B, south of the Costa Rica Rift, eastern Pacific. It occurs as fine-grained crystal aggregates accompanied by albite, chlorite and chalcopyrite, which partially replace a plagioclase phenocryst (An85–88) that is also associated with primary magnetite. Chemical compositions of the pumpellyite vary antithetically in relation to Fe* and Al as well as Fe* and Mg, indicating the dominant substitution of Fe3+ by Al with the minor substitution of Fe2+ by Mg. Such compositional variations overlap with those of prehnite-pumpellyite facies rocks dredged from other oceanic ridges and intra-oceanic arcs, and those of similar facies rocks from ophiolites, but are aluminous compared with those of zeolite facies metabasites in ophiolites. These observations suggest that the breakdown of the plagioclase phenocryst and magnetite in the presence of a Cu- and S-bearing fluid phase led to the formation of pumpellyite + albite + chlorite + chalcopyrite during oceanic ridge hydrothermal alteration.


2015 ◽  
Vol 51 (2) ◽  
pp. 179-200 ◽  
Author(s):  
Clifford G. C. Patten ◽  
Iain K. Pitcairn ◽  
Damon A. H. Teagle ◽  
Michelle Harris

Sign in / Sign up

Export Citation Format

Share Document