compositional variations
Recently Published Documents


TOTAL DOCUMENTS

634
(FIVE YEARS 130)

H-INDEX

45
(FIVE YEARS 6)

Author(s):  
G. Márquez ◽  
L. González ◽  
A. Permanyer ◽  
C. Boente ◽  
M.A. Guzmán ◽  
...  

2021 ◽  
Vol 923 (1) ◽  
pp. 29
Author(s):  
Xiaoshu Wu ◽  
Jun Cui ◽  
Dandan Niu ◽  
Zhipeng Ren ◽  
Yong Wei

Abstract The Martian ionosphere plays a crucial role in driving the interactions of the planet with solar photons and solar wind particles. The variations of the dayside Martian ionosphere with several controlling factors, including the solar extreme ultraviolet radiation, the background atmosphere, and the underlying thermal structure, have been the topic of extensive research in terms of electron distribution. In contrast, how the ionospheric composition varies has not been systematically investigated, a topic that is attempted in this study based on photochemical equilibrium computations performed at 100–200 km altitude, including a large number of reactions. Our calculations reveal the following compositional variations as natural outcomes of the ionospheric chemistry on Mars. (1) With increasing solar irradiance, the proportions of the majority of nonterminal ions are enhanced at the expense of reduced proportions of terminal ions, including O 2 + , HCO+, NO+, and H3O+. (2) At high electron temperatures, the proportion of NO+ is modestly reduced, whereas the proportions of the other species are nearly unaffected. (3) The response of the ionospheric composition to the upper atmospheric composition is complicated, showing the strong negative response of many trace ions to ambient CO2, O, and CO, as well as the strong positive response of protonated ions to H2, nitrogen-bearing ions to N and N2, water-group ions to H2O, and HO 2 + to O2. As an application of the model results, the recent ion measurements made on board the Mars Atmosphere and Volatile Evolution are used to provide hints about the realistic composition of the Martian upper atmosphere.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3417
Author(s):  
Marco Isidori ◽  
Fabrizio Rueca ◽  
Francesca Romana Massacci ◽  
Manuela Diaferia ◽  
Andrea Giontella ◽  
...  

The aim was to assess the effects of Ascophyllum nodosum (AN) with/without Bacillus subtilis C-3102 as alternative treatments for Chronic Inflammatory Enteropathy (CIE) of dogs. Fourteen CIE patients, which had received the same control (CTR) diet, were enrolled to serially receive three diets: (1) hydrolysed protein (HP) diet; (2) 4.0% AN supplemented HP (HPA) food, (3) HPA diet fortified with 125 billion B. subtilis C-3102 spores/10 kg body weight (HPAB diet). Clinical outcome was assessed by Canine Inflammatory Bowel Disease Activity Index (CIBDAI), whereas gut microbiota compositional variations were investigated via 16S rRNA gene analysis, and faecal fermentation end-products by liquid chromatography. Higher abundances of the Ruminococcaceae and Rikenellaceae families were shown in HPA relative to CTR treatment, with Bacillus genus being differentially abundant on HPAB diet. Concentrations of acetate were higher (p < 0.05) in dogs fed HPA compared to CTR diet, and amounts of isovalerate and isobutyrate were greater (p < 0.05) in HPA compared to HP food. A tendency for higher amounts of faecal butyrate was found for the HPAB treatment (p = 0.06). Comprehensively, while displaying potentially positive effects on faecal fermentations, the tested substances failed to improve CIBDAI scores and microbial richness in CIE dogs.


2021 ◽  
Vol 54 (2E) ◽  
pp. 24-37
Author(s):  
Sarmad A Ali

The gabbroic rocks as a part of Zagros ophiolite are exposed in northeastern Iraq, Penjwin area. These rocks with granular to ophitic textures are widely distributed without metamorphic halos. The main minerals are plagioclase (An90-99), olivine, clinopyroxene (Wo27-47 En 45-64 Fs8-14) and orthopyroxene (Wo2 En78 Fs20) respectively based on the abundances. The major elements show a broad range of compositional variations, with SiO2 (46.2–50.9 wt. %), and low concentrations Na2O (0.15–0.62 wt. %), K2O (0.01–0.03 wt. %) and TiO2 (0.06–0.2) and high concentrations, Al2O3 (6.4–19.75 wt. %), total Fe2O3 (6.29–11.6 wt. %), MgO (9.63–24.5 wt. %), CaO (8.02–18 wt. %) and low alkali contents (Na2O + K2O = 0.16–0.65 wt. %). On Ti-V diagram, all of the gabbroic samples have Ti/V less than 10 and consequently fall in the low Ti- Island arc tholeiitic. Whole rocks chemistry shows a depletion of High field strength elements in comparison with the primitive mantle with an arched upward rare earth elements pattern, characterized by light rare earth elements depletion (La N/Sm N = 0.05–0.8) and enrichment in the High field strength elements. Whole rocks chemistry, mineral paragenesis and chemistry of these rocks are more consistent with tholeiitic magma series. Based on our findings in this research, the primary magma has been produced from the depleted mantle with a high degree of partial melting.


2021 ◽  
Vol 47 (4) ◽  
Author(s):  
Monica Piochi ◽  
Lucia Pappalardo ◽  
Gianfilippo De Astis

A spatial variation in chemical and isotopical composition is observed between the volcanoes belonging to the Campanian Comagmatic Province. At a given MgO content, magmas from volcanic islands (Procida and Ischia) are enriched in Ti, Na, depleted in La, Ba, Rb, Sr, Th, K contents, and shows lower LREE/HFSE (e.g., La/Nb = = 1-2), lower Sr-Pb isotopic ratios and higher Nd isotopic ratios with respect to magmas from volcanoes locat- ed inland (Campi Flegrei and Somma-Vesuvius). The observed compositional variations are explained involving two different mantle sources in the genesis of the magmas erupted in this region: a deeper asthenospheric man- tle source, from which the Tyrrhenian magmas also derived and a lithospheric mantle source enriched by slab- derived fluids. The contribution of the enriched-lithospheric mantle became more pronounced moving from the Tyrrhenian abyssal plain through the Italian Peninsula where it dominates, likely in response to the thickening of the lithosphere observed under the Peninsula


2021 ◽  
Vol 7 (11) ◽  
pp. 151
Author(s):  
Andrei N. Salak ◽  
João Pedro V. Cardoso ◽  
Joaquim M. Vieira ◽  
Vladimir V. Shvartsman ◽  
Dmitry D. Khalyavin ◽  
...  

The phase content and sequence, the crystal structure, and the magnetic properties of perovskite solid solutions of the (1−y)BiFeO3–yBiZn0.5Ti0.5O3 series (0.05 ≤ y ≤ 0.90) synthesized under high pressure have been studied. Two perovskite phases, namely the rhombohedral R3c and the tetragonal P4mm, which correspond to the structural types of the end members, BiFeO3 and BiZn0.5Ti0.5O3, respectively, were revealed in the as-synthesized samples. The rhombohedral and the tetragonal phases were found to coexist in the compositional range of 0.30 ≤ y ≤ 0.90. Magnetic properties of the BiFe1−y[Zn0.5Ti0.5]yO3 ceramics with y < 0.30 were measured as a function of temperature. The obtained compositional variations of the normalized unit-cell volume and the Néel temperature of the BiFe1−y[Zn0.5Ti0.5]yO3 perovskites in the range of their rhombohedral phase were compared with the respective dependences for the BiFe1−yB3+yO3 perovskites (where B3+ = Ga, Co, Mn, Cr, and Sc). The role of the high-pressure synthesis in the formation of the antiferromagnetic states different from the modulated cycloidal one characteristic of the parent BiFeO3 is discussed.


2021 ◽  
Vol 501 (1) ◽  
pp. 919-924
Author(s):  
A. M. Logvinova ◽  
A. O. Serebryannikov ◽  
N. V. Sobolev

2021 ◽  
Author(s):  
Joakim Halldin Stenlid ◽  
Verena Streibel ◽  
Tej S. Choksi ◽  
Frank Abild-Pedersen

Bimetallic alloys have emerged as an important class of catalytic materials, spanning a wide range of shapes, sizes, and compositions. The combinatorics across this wide materials space makes predicting catalytic turnovers of individual active sites challenging. Herein, we introduce the stability of active sites as a descriptor for site-resolved reaction rates. The site stability unifies structural and compositional variations in a single descriptor. We compute this descriptor using coordination-based models trained with DFT calculations. Our approach enables instantaneous predictions of catalytic turnovers for nanostructures up to 12 nm in size. Using NO dissociation as probe reaction, we identify that octahedral Au-Pt core-shell nanoparticles and 3 nm 0.5:0.5 AuPt random alloys yield greater than 10 times higher compared to monometallic Pt nanoparticles. By prescribing specific sizes, morphologies, and compositions of optimal catalytic nanoparticles, our method provides tailored guidance to experiments for rationally designing bimetallic catalysts.


Sign in / Sign up

Export Citation Format

Share Document