alteration processes
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 58)

H-INDEX

24
(FIVE YEARS 3)

Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Kastytis Rudokas ◽  
Silvija Čižaitė-Rudokienė

The article focuses on the phenomenon of myth, which cannot be seen and may not even exist based on empirical evidence, although it can function as a long-lasting wave inceptor, as demonstrated in numerous cases in history. The singular presence of myth has no linear time, and the way to approach the concealed mythic meaning that is beyond tales, oral traditions or ritual practices is based on language and narrative. Narrative is how myth manifests itself in the temporal layers of discourse through collective decision-making processes within cultures and in places. The urban cultural heritage seems to be a promising source of understanding of what sort of narrative history has been telling. We emphasize that the closest possible approach to the permanence of myth lies in this subtle between-epoch or between-generational moment wherein the discourse alters. The hermeneutics of repetition within alteration processes is what could be called the narrative of cultural heritage in towns and cities. Development of the physical heritage properties has been touched by a variety of agents, and therefore it must have gathered a nearly unlimited amount of explicit and implicit knowledge. The research further demonstrates how the myth–narrative–discourse interaction affects our understanding of the authenticity of heritage objects, shifting towards a permanent pervading authenticity which could be intensive or extensive in the tangible realm. The case of Šiluva is discussed in order to explain how myth can be used practically in placemaking.


2021 ◽  
Author(s):  
Dr. Peter Birkle ◽  
Hamdi A. AlRamadan

Abstract The buildup of high casing-casing annulus (CCA) pressure compromises the well integrity and can lead to serious incidents if left untreated. Potential sources of water causing the elevated CCA pressure are either trapped water in the cement column or water from a constant feeding source. This study utilizes inorganic geochemical techniques to determine the provenance of CCA produced water as trigger for high pressure in newly drilled wells. Affinities in the hydrochemical (major, minor and trace elements) and stable isotopic (δ2H, δ18O) composition are monitored to identify single fluid types, multi-component mixing and secondary fluid alteration processes. As a proof-of-concept, geochemical fingerprints of CCA produced water from three wells were correlated with potential source candidates, i.e., utilized drilling fluids (mud filtrate, supply water) from the target well site, Early - Late Cretaceous aquifers and Late Jurassic - Late Triassic formation waters from adjacent wells and fields. Geochemical affinities of CCA water with groundwater from an Early Cretaceous aquifer postulate the presence one single horizon for active water inflow. Non-reactive elements (Na, Cl) and environmental isotopes (δ2H, δ18O) were found to be most suited tools for fluid identification. 2H/1H and 18O/16O ratios of supply water and mud filtrate are close to global meteoric water composition, whereas formation waters are enriched in 18O. Elevated SO4 and K concentrations and extreme alkaline conditions for CCA water indicates the occurrence of minor secondary alteration processes, such the contact of inflowing groundwater with cement or fluid mixing with minor portions of KCl additives. The presented technology in this study enables the detection of high CCA pressure and fluid leakages sources, thereby allowing workover engineers to plan for potential remedial actions prior to moving the rig to the affected well; hence significantly reducing operational costs. Appropriate remedial solutions can be prompted for safe well abandonment as well as to resume operation at the earliest time.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 493
Author(s):  
Chiara Elmi ◽  
Anna Cipriani ◽  
Federico Lugli ◽  
Giampaolo Sighinolfi

In this study, twenty five partially vitrified rocks and four samples of vitrified rocks collected on the top hill called Serravuda (Acri, Calabria, Italy) are analyzed. The goal is to shed light on the origin of these enigmatic vitrified materials. The analyzed vitrified rocks are a breccia of cemented rock fragments (gneiss, granitoid, and amphibolite fragments) which extends for more than 10 m, forming a continuous mass along the northern and north-west border of the flat top hill. Surrounded by the vitrified accumulation, exposed Paleozoic granitoid substrate rocks show limited melting or heat-alteration processes. By mapping minerals embedded in the glass matrix via X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM), an interpretation of source rock material, reactions, and thermometric indications to form vitrified materials on the top hill of Serravuda, Acri (Italy), is provided. The mineralogical composition of heated or partially vitrified samples is heterogeneous owing to the effects of heating events, but it mostly recalls the parent rock composition (gneiss, granitoid, and amphibolite). The presence of quartz, cristobalite, tridymite, mullite, plagioclase, hercynite, cordierite, and olivine in Serravuda partially vitrified rocks and glasses suggests that samples were subjected to pyrometamorphism and the temperature range at which the glass formed was about 1000–1100 °C in the presence of hydrous gas, burning organic material (e.g., wood), and assuming thermodynamic equilibrium. Lithologies of the heated or partially vitrified rock fragments are a mixture of parent rocks not outcropping on the top of the hill such as gneiss and amphibolite. Data suggest that Serravuda vitrified rocks are most likely the result of anthropic activities and could represent remnants of vitrified fort walls. The mineral assemblage of partially vitrified rocks and glasses suggests that the fort walls were made of slabs derived from the local metamorphic rocks with the addition of Serravuda substrate Paleozoic granitoid rocks to improve the strength and insulation of the fort walls.


2021 ◽  
Author(s):  
◽  
Kartika Palupi Savitri

<p>Tompaso geothermal system is a typical volcanic arc geothermal system in North Sulawesi, Indonesia. Although situated close to the Tondano caldera, subsurface lithologies and structures do not show any evidence for caldera-related features and the system is inferred to be related to the andesitic Soputan volcano. The subsurface geology of Tompaso consists of Tuff B unit, Rhyolite unit, Andesite B unit, Pitchstone unit, Pyroclastic Breccia unit,Andesite A unit, Pumice unit, and Tuff A unit, respectively, from the oldest penetrated unit. The silicic Pitchstone and Rhyolite units are presumed to be sourced from the same magma chamber. Petrological and mineralogical observations using binocular and petrographic microscopy, short-wave infrared (SWIR) analysis, and back-scattered electron (BSE) imaging combined with energy dispersive X-ray spectroscopy (EDS) have been applied to cuttings and limited core material from three boreholes: LHD-26, LHD-27, and LHD-32. Age dating has not been undertaken and, thus, conclusions on correlations between subsurface geology inferred here with surface formation groupings from previous works cannot be drawn.  Tompaso geothermal system is characterised primarily by variations in the fracturing within the reservoir. Secondary mineralogy and the structure of present-day temperature of the system suggest that the movement of hydrothermal fluids at Tompaso is controlled by faults: the Soputan, Tempang, and A-A’ faults, the last defined for the first time in this thesis. Soputan Fault controls the outflow of the system. On the other hand, the influence of Tempang and A-A’ faults is dominant only in the upper portion of the system. The A-A’ fault likely acts as a channel for cooler meteoric surface water, while the Tempang Fault is inferred to have experienced self-sealing and appears to be an impermeable structure in the system. The self-sealing process of the Tempang Fault and/or the introduction of meteoric water through the A-A’ fault may be related to the cooling of the northern and western part of the system.  The challenges in identifying protoliths in active geothermal areas is addressed here through studies of the influence of andesite textures on the preferences of hydrothermal alteration processes. Wairakei andesites were chosen for comparison to Tompaso andesites, especially because of its different geological setting and geothermal reservoir structure. The results suggest that mineral composition and arrangement affect the preference of hydrothermal alteration on andesites.</p>


2021 ◽  
Author(s):  
◽  
Kartika Palupi Savitri

<p>Tompaso geothermal system is a typical volcanic arc geothermal system in North Sulawesi, Indonesia. Although situated close to the Tondano caldera, subsurface lithologies and structures do not show any evidence for caldera-related features and the system is inferred to be related to the andesitic Soputan volcano. The subsurface geology of Tompaso consists of Tuff B unit, Rhyolite unit, Andesite B unit, Pitchstone unit, Pyroclastic Breccia unit,Andesite A unit, Pumice unit, and Tuff A unit, respectively, from the oldest penetrated unit. The silicic Pitchstone and Rhyolite units are presumed to be sourced from the same magma chamber. Petrological and mineralogical observations using binocular and petrographic microscopy, short-wave infrared (SWIR) analysis, and back-scattered electron (BSE) imaging combined with energy dispersive X-ray spectroscopy (EDS) have been applied to cuttings and limited core material from three boreholes: LHD-26, LHD-27, and LHD-32. Age dating has not been undertaken and, thus, conclusions on correlations between subsurface geology inferred here with surface formation groupings from previous works cannot be drawn.  Tompaso geothermal system is characterised primarily by variations in the fracturing within the reservoir. Secondary mineralogy and the structure of present-day temperature of the system suggest that the movement of hydrothermal fluids at Tompaso is controlled by faults: the Soputan, Tempang, and A-A’ faults, the last defined for the first time in this thesis. Soputan Fault controls the outflow of the system. On the other hand, the influence of Tempang and A-A’ faults is dominant only in the upper portion of the system. The A-A’ fault likely acts as a channel for cooler meteoric surface water, while the Tempang Fault is inferred to have experienced self-sealing and appears to be an impermeable structure in the system. The self-sealing process of the Tempang Fault and/or the introduction of meteoric water through the A-A’ fault may be related to the cooling of the northern and western part of the system.  The challenges in identifying protoliths in active geothermal areas is addressed here through studies of the influence of andesite textures on the preferences of hydrothermal alteration processes. Wairakei andesites were chosen for comparison to Tompaso andesites, especially because of its different geological setting and geothermal reservoir structure. The results suggest that mineral composition and arrangement affect the preference of hydrothermal alteration on andesites.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 433
Author(s):  
Johanne Klee ◽  
Arezki Chabani ◽  
Béatrice A. Ledésert ◽  
Sébastien Potel ◽  
Ronan L. Hébert ◽  
...  

Fracture connectivity within fractured granitic basement geothermal reservoirs is an important factor controlling their permeability. This study aims to improve the understanding of fluid–rock interaction processes at low to moderate regional strain. The Noble Hills range (Death Valley, CA, USA) was chosen as a naturally exhumed paleo geothermal reservoir. A series of petrographic, petrophysical, and geochemical investigations, combined with a fracture distribution analysis, were carried out on samples collected across fracture zones. Our results indicate that several generations of fluids have percolated through the reservoir. An increase of (1) the alteration degree; (2) the porosity values; and (3) the calcite content was observed when approaching fracture zones. No correlation was identified among the alteration degree, the porosity, or the calcite content. At a local scale, samples showed that the degree of alteration does not necessarily depend on the fracture density or on the amount of the strain. It is concluded that the combined influence of strain and coeval fluid–rock interaction processes drastically influence the petrophysical properties of fracture zones, which in turn impact geothermal production potential.


2021 ◽  
Vol 176 (10) ◽  
Author(s):  
Bing Xiao ◽  
Yuanming Pan ◽  
Hao Song ◽  
Wenlei Song ◽  
Yu Zhang ◽  
...  

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 325
Author(s):  
Johanne Klee ◽  
Sébastien Potel ◽  
Béatrice A. Ledésert ◽  
Ronan L. Hébert ◽  
Arezki Chabani ◽  
...  

Only few data from geothermal exploited reservoirs are available due to the restricted accessibility by drilling, which limits the understanding of the entire reservoir. Thus, analogue investigations are needed and were performed in the framework of the H2020 MEET project. The Noble Hills range, located along the southern branch of the Death Valley pull-apart (CA, USA), has been selected as a possible granitic paleo-reservoir. The aim is to characterize the pervasive alteration processes affecting this granite, away from the influence of the faults, in terms of mineralogical, petrophysical and chemical changes. Various methods were used as petrographic, geochemical and petrophysical analyses. Mineral changes, clay mineralogy, bulk rock chemical composition, calcite content and porosity were determined on different granite samples, collected in the Noble Hills granite, far from the faults and in the Owlshead Mountains, north of the Noble Hills, considered as its protolith. In order to complete the granite characterization, the metamorphic grade has been studied through the Noble Hills granite body. This complete characterization has allowed distinguishing the occurrence of three stages of alteration: (1) a pervasive propylitic alteration characterized by calcite-corrensite-epidote-K-white mica assemblage, (2) a more local one, only present in the Noble Hills granite, producing illite, kaolinite, illite/smectite, calcite and oxides, characteristic of the argillic alteration, which overprints the propylitic alteration and (3) weathering evidenced by the presence of montmorillonite in the Owlshead Mountains, which is considered as negligible in both granites. Alteration was also outlined by the correlation of the loss on ignition, representing the hydration rate, to porosity, calcite content and chemical composition. Moreover, the Kübler Index calculated from illite crystals allowed to identify a NW-SE temperature gradient in the Noble Hills.


Sign in / Sign up

Export Citation Format

Share Document