A COMMENT ON EXTRAPOLATED SINGLE PARTICLE SPECTRA FOR SUPERHEAVY NUCLEI

1978 ◽  
pp. 327-340
Author(s):  
F. Petrovich
2010 ◽  
Vol 25 (21n23) ◽  
pp. 1809-1813 ◽  
Author(s):  
XIAN-RONG ZHOU ◽  
HIROYUKI SAGAWA

The effect of tensor interaction is discussed on the deformation and the shell structure of heavy and superheavy nuclei within the deformed Skyrme Hartree-Fock+BCS model. The importance of the tensor correlations is shown for the single particle spectra of protons in 249 Bk . The large shell gaps of superheavy nuclei are found at Z = 114 and Z = 120 for protons and N = 184 for neutrons with the spherical shape irrespective of the tensor correlations. It is also shown that Z = 114 and N = 164 shell gaps are more pronounced by the tensor correlations in the case of SLy 5+ T interaction.


2021 ◽  
Author(s):  
Xiao-Qian Wang ◽  
Xiang-Xiang Sun ◽  
Shan-Gui 周善贵 Zhou

Abstract We study the effects of higher-order deformations βλ (λ = 4,6,8, and 10) on the ground state properties of superheavy nuclei (SHN) near the deformed doubly magic nucleus 270Hs by using the multidimensionally-constrained (MDC) relativistic mean-field (RMF) model with five effective interactions PC-PK1, PK1, NL3∗, DD-ME2, and PKDD. The doubly magic properties of 270Hs are featured by the large energy gaps at N = 162 and Z = 108 in the single-particle spectra. By investigating the binding energies and single-particle levels of270Hs in multidimensional deformation space, we find that the deformation β6 has the greatest impact on the binding energy among these higher-order deformations and influences the shell gaps considerably. Similar conclusions hold for other SHN near 270Hs. Our calculations demonstrate that the deformation β6 must be considered when studying SHN by using MDC-RMF.


1999 ◽  
Vol 13 (24n25) ◽  
pp. 3039-3047
Author(s):  
M. G. ZACHER ◽  
A. DORNEICH ◽  
R. EDER ◽  
W. HANKE ◽  
S. C. ZHANG

We discuss properties of a recently proposed SO(5) symmetric ladder model. Key features of the single particle spectral function that are emerging from the symmetry are numerically identified in the ladder model and in the photoemission spectrum of the two-dimensional t–J model.


1994 ◽  
Vol 566 ◽  
pp. 515-518 ◽  
Author(s):  
H. Bøggild ◽  
J. Boissevain ◽  
M. Cherney ◽  
J. Dodd ◽  
J. Downing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document