Wind power forecasting—a review of the state of the art

Author(s):  
Gregor Giebel ◽  
George Kariniotakis
2014 ◽  
Author(s):  
Joana Mendes ◽  
Jean Sumaili ◽  
Ricardo Bessa ◽  
Hrvoje Keko ◽  
Vladimiro Miranda ◽  
...  

2009 ◽  
Author(s):  
C. Monteiro ◽  
R. Bessa ◽  
V. Miranda ◽  
A. Botterud ◽  
J. Wang ◽  
...  

2013 ◽  
Vol 133 (4) ◽  
pp. 366-372 ◽  
Author(s):  
Isao Aoki ◽  
Ryoichi Tanikawa ◽  
Nobuyuki Hayasaki ◽  
Mitsuhiro Matsumoto ◽  
Shigero Enomoto

2019 ◽  
Vol 139 (3) ◽  
pp. 212-224
Author(s):  
Xiaowei Dui ◽  
Masakazu Ito ◽  
Yu Fujimoto ◽  
Yasuhiro Hayashi ◽  
Guiping Zhu ◽  
...  

Author(s):  
Sumit Saroha ◽  
Sanjeev K. Aggarwal

Objective: The estimation accuracy of wind power is an important subject of concern for reliable grid operations and taking part in open access. So, with an objective to improve the wind power forecasting accuracy. Methods: This article presents Wavelet Transform (WT) based General Regression Neural Network (GRNN) with statistical time series input selection technique. Results: The results of the proposed model are compared with four different models namely naïve benchmark model, feed forward neural networks, recurrent neural networks and GRNN on the basis of Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) performance metric. Conclusion: The historical data used by the presented models has been collected from the Ontario Electricity Market for the year 2011 to 2015 and tested for a long time period of more than two years (28 months) from November 2012 to February 2015 with one month estimation moving window.


Sign in / Sign up

Export Citation Format

Share Document