Design of offshore wind turbine towers

2016 ◽  
pp. 263-357 ◽  
Author(s):  
R.R. Damiani
2016 ◽  
Vol 158 ◽  
pp. 122-138 ◽  
Author(s):  
M. Feyzollahzadeh ◽  
M.J. Mahmoodi ◽  
S.M. Yadavar-Nikravesh ◽  
J. Jamali

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5102
Author(s):  
Yu Hu ◽  
Jian Yang ◽  
Charalampos Baniotopoulos

Offshore wind energy is a rapidly maturing renewable energy technology that is poised to play an important role in future energy systems. The respective advances refer among others to the monopile foundation that is frequently used to support wind turbines in the marine environment. In the present research paper, the structural response of tall wind energy converters with various stiffening schemes is studied during the erection phase as the latter are manufactured in modules that are assembled in situ. Rings, vertical stiffeners, T-shaped stiffeners and orthogonal stiffeners are considered efficient stiffening schemes to strengthen the tower structures. The loading bearing capacity of offshore monopile wind turbine towers with the four types of stiffeners were modeled numerically by means of finite elements. Applying a nonlinear buckling analysis, the ultimate bearing capacity of wind turbine towers with four standard stiffening schemes were compared in order to obtain the optimum stiffening option.


Author(s):  
Ensari Yigit M ◽  
Anil Ozdemir ◽  
Fethi Sermet ◽  
Murat Pinarlik

It is known that the use of renewable energy has an increasing trend in whole world. Wind energy is one of the renewable energy types, as well is among the cleanest and most economical energy sources. Nowadays, in order to provide much more energy from wind, turbine towers are being built higher and the turbine blades have begun to be manufactured longer. Due to these applications, tower and turbine weights are continuously increasing. For this reason, it is necessary to optimize the materials used as well as the dimensions of the turbine towers. In the present study, behavior of TLP floating wind turbine towers with three different designs under wave, hydrostatic and static loads were investigated. In order to clarify the effect of these loads, turbine designs were analyzed in the ratio of 1/5 using finite elements method. Steel, reinforced concrete and hybrid (reinforced concrete and steel) wind turbine towers tied to sea floor at a depth of 10 meters rigidly by TLP floating method. In this context, 10-meter-high turbine towers having three different designs which static analyzed previously were used for investigate effects of wave and hydrostatic loads. Turbine structures analyzed with ABAQUS finite elements model. The deformations and stress values of underwater turbine structures were obtained and compared with each other. As it can be seen from analysis results, compared to the reinforced concrete design, the displacement of steel tower design decreased 77.84%. It is seen that the torsion effect was dominant in the steel tower design. However, the decreasing displacement value for steel design was recorded as 44.43% compared to the hybrid tower design.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 659 ◽  
Author(s):  
Lorenzo Alessi ◽  
José Correia ◽  
Nicholas Fantuzzi

Jackets are the most common structures in the Adriatic Sea for extracting natural gas. These structural typologies are suitable for relative low water depths and flat sandy sea floors. Most of them have been built in the last 50 years. When the underground source finishes, these structures should be moved to another location or removed if they have reached their design life. Nevertheless, another solution might be considered: change the future working life of these platforms by involving renewable energy and transforming them into offshore wind towers. The present research proposal aims to investigate the possibility of converting actual structures for gas extraction into offshore platforms for wind turbine towers. This simplified analysis is useful for initial design phases and tender design, or generally when available information is limited. The model proposed is a new simplified tool used to study the structural analysis of the jacket structure, developed and summarized in 10 steps, firstly adopted to study the behavior of the oil and gas structure and then for the retrofitted wind tower configuration.


Sign in / Sign up

Export Citation Format

Share Document