Woven fabric structures and properties

Author(s):  
B. Kumar ◽  
J. Hu
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Stana Kovačević ◽  
Snježana Brnada ◽  
Irena Šabarić ◽  
Franka Karin

AbstractThe weaving process is constantly evolving in terms of productivity, quality, and possibilities of fabrication of different fabric structures and shapes. This article covers some issues that have still not been resolved and represents distracting factors in the woven fabrics production. In the development of woven fabric using the CAD technology, it is inevitably a deviation of the virtual image on the computer screen from the woven sample. According to comprehensive industry analyses, the findings of many authors who contributed to the resolution of these problems can be concluded that these problems are still present in the development and production of striped, checkered, and jacquard woven fabrics. In this article, jacquard, multicolor woven fabrics were investigated, with deviations in pattern sizes and shades of color in warp and weft systems compared to virtual simulation on the computer, as well as the tendency of the weft distortion arising from the weaving process leading to the pattern deformation.


2019 ◽  
pp. 152808371985877 ◽  
Author(s):  
Pilar Segura-Alcaraz ◽  
Jorge Segura-Alcaraz ◽  
Ignacio Montava ◽  
Marilés Bonet-Aracil

Textile materials can be used as acoustic materials. In this study, the acoustic absorption coefficient of multilayer fabrics with 60 ends/cm and 15, 30, 45, and 60 picks/cm is measured when the fabric is added as a resistive layer on top of a polyester nonwoven, in order to study the influence of the fabric spatial structure in the acoustic absorption of the assembly. Five different fabric structures are used. Design of experiments and data analysis tools are used to describe the influence of two manufacturing factors on the sound absorption coefficient of the ensemble. These factors are the fabric weft count (picks/cm) and the thickness of the nonwoven (mm). The experimental conditions under which the maximum sound absorption coefficient is achieved are found. The influence of each factor and a mathematical model are obtained. Results of statistical and optimization analysis show that for the same fabric density, sound absorption coefficient increases as the number of layers decreases.


2013 ◽  
Vol 13 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Brigita Kolčavová Sirková ◽  
Iva Mertová

Abstract Fabric properties and fabric structure prediction are important in each industry domain. Generally all professional CAD packages for woven textiles system will be able to achieve basic fabric simulation and production output. A good CAD system should enable you to create design (dobby and jacquard woven fabric) ideas quickly and easily to enhance the way you work. The differences among competing systems fall mainly into the following categories: ease of use; speed of operation; flexibility of operation; advanced features; technical support; and ongoing software development. Computer simulation or prediction is oriented on standard woven fabrics, technical textiles, and composites. This article focuses on the presentation of software ProTkaTex and its use in the prediction of woven fabric properties. The software implements a generalized description of the internal structure of woven fabric on the unit cell level, integrated with mathematical models of the fabric relaxed state. User can calculate selected mechanical and end-use properties of dobby and jacquard woven fabric as well as can evaluate fabric behavior before real weaving. The major challenge is to develop software that industry will use in design centers for creation and development of new fabric structures for technical as well as clothing application.


2020 ◽  
Vol 363 ◽  
pp. 112874
Author(s):  
Yang Guo ◽  
Qian Ye ◽  
Xiaopeng Zheng ◽  
Shikui Chen ◽  
Na Lei ◽  
...  

2010 ◽  
Vol 81 (8) ◽  
pp. 847-864 ◽  
Author(s):  
Kadir Bilisik ◽  
Mahmut Korkmaz

2012 ◽  
Vol 13 (10) ◽  
pp. 1326-1334
Author(s):  
Kadir Bilisik ◽  
Oguz Demiryurek

Sign in / Sign up

Export Citation Format

Share Document