acoustic absorption
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 82)

H-INDEX

30
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 453
Author(s):  
Andrea Petrella ◽  
Sabino De De Gisi ◽  
Milvia Elena Di Di Clemente ◽  
Francesco Todaro ◽  
Ubaldo Ayr ◽  
...  

Environmentally sustainable cement mortars containing wheat straw (Southern Italy, Apulia region) of different length and dosage and perlite beads as aggregates were prepared and characterised by rheological, thermal, acoustic, mechanical, optical and microstructural tests. A complete replacement of the conventional sand was carried out. Composites with bare straw (S), perlite (P), and with a mixture of inorganic and organic aggregates (P/S), were characterised and compared with the properties of conventional sand mortar. It was observed that the straw fresh composites showed a decrease in workability with fibre length decrease and with increase in straw volume, while the conglomerates with bare perlite, and with the aggregate mixture, showed similar consistency to the control. The thermal insulation of the straw mortars was extremely high compared to the sand reference (85–90%), as was the acoustic absorption, especially in the 500–1000 Hz range. These results were attributed to the high porosity of these composites and showed enhancement of these properties with decrease in straw length and increase in straw volume. The bare perlite sample showed the lowest thermal insulation and acoustic absorption, being less porous than the former composites, while intermediate values were obtained with the P/S samples. The mechanical performance of the straw composites increased with length of the fibres and decreased with fibre dosage. The addition of expanded perlite to the mixture produced mortars with an improvement in mechanical strength and negligible modification of thermal properties. Straw mortars showed discrete cracks after failure, without separation of the two parts of the specimens, due to the aggregate tensile strength which influenced the impact compression tests. Preliminary observations of the stability of the mortars showed that, more than one year from preparation, the conglomerates did not show detectable signs of degradation.


2022 ◽  
Vol 186 ◽  
pp. 108504
Author(s):  
Aurora Magnani ◽  
Cristina Marescotti ◽  
Francesco Pompoli

2021 ◽  
Vol 2120 (1) ◽  
pp. 012039
Author(s):  
V Sekar ◽  
S Y Eh Noum ◽  
S Sivanesan ◽  
A Putra ◽  
Dg H Kassim ◽  
...  

Abstract In recent times, Additive Manufacturing (AM) has been applied rapidly in almost all fields. This study was conducted to apply the additive manufacturing into an acoustic application by 3D printing the Micro-Perforated Panels (MPP) through Fused Deposition Modelling (FDM) made of Polylactic Acid (PLA) reinforced with wood fibers. MPP were fabricated by altering its perforation volume. Later, the effect of perforation volume on acoustic absorption of the fabricated MPP was measured using the two-microphone impedance tube method as per ISO 10534-2 standard. The result shows altering the perforation volume affects the acoustic absorption of the MPP. MPP with a thickness of 2 mm and a perforation diameter of 0.2 mm shows the maximum sound absorption coefficient of 0.93 at 2173 Hz. It is made possible to absorb the 3D printed MPP made of natural fiber reinforced composite at different spectrums by altering the perforation volume.


2021 ◽  
Vol 184 ◽  
pp. 108369
Author(s):  
Honggang Zhao ◽  
Qiquan Zheng ◽  
Yang Wang ◽  
Junhui Cao ◽  
Chao Wang ◽  
...  

Designs ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 72
Author(s):  
Heow Pueh Lee ◽  
Sanjay Kumar ◽  
Jie Wei Aow

A micro-perforated plate or panel (MPP) is a device used to absorb sound. It consists of a thin flat plate made from several different materials with small holes and a back cavity. Several reported modifications and enhancements to the original design of the MPP acoustic absorber were modified by the holes or the back-cavity shape and sizes following the original idea. The present study attempts to artistically beautify the MPP acoustic absorbers by incorporating dotted arts into the design of MPP. The perforation for micro-perforated panels could be dotted arts with a perforation size smaller than 1 mm for enhanced acoustic absorption performance in the form of various artistic designs. Small LED lights could be placed inside the acoustic chamber to create the color lights emanating from the perforations instead of dots with different colors. Several MPP incorporated artistic designs of dotted patterns were presented and their acoustic absorption performance was analyzed using impedance tube in this paper.


2021 ◽  
Vol 182 ◽  
pp. 108181
Author(s):  
Wenqiang Xu ◽  
Jiawei Liu ◽  
Dianlong Yu ◽  
Jihong Wen

Author(s):  
Abel Shiferaw Alemu ◽  
Jinyoung Yoon ◽  
Million Tafesse ◽  
Yo-Seob Seo ◽  
Hyeong-Ki Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document