Chalcophile Elements: Systematics and Relevance

2021 ◽  
pp. 67-80
Author(s):  
Penny E. Wieser ◽  
Frances E. Jenner
Keyword(s):  
2020 ◽  
Author(s):  
Penny Wieser ◽  
Frances Jenner ◽  
Marie Edmonds ◽  
John Maclennan ◽  
Barbara Kunz

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
E. P. Shevko ◽  
S. B. Bortnikova ◽  
N. A. Abrosimova ◽  
V. S. Kamenetsky ◽  
S. P. Bortnikova ◽  
...  

Native sulfur deposits on fumarolic fields at Ebeko volcano (Northern Kuriles, Russia) are enriched in chalcophile elements (As-Sb-Se-Te-Hg-Cu) and contain rare heavy metal sulfides (Ag2S, HgS, and CuS), native metal alloys (Au2Pd), and some other low-solubility minerals (CaWO4, BaSO4). Sulfur incrustations are impregnated with numerous particles of fresh and altered andesite groundmass and phenocrysts (pyroxene, magnetite) as well as secondary minerals, such as opal, alunite, and abundant octahedral pyrite crystals. The comparison of elemental abundances in sulfur and unaltered rocks (andesite) demonstrated that rock-forming elements (Ca, K, Fe, Mn, and Ti) and other lithophile and chalcophile elements are mainly transported by fumarolic gas as aerosol particles, whereas semimetals (As, Sb, Se, and Te), halogens (Br and I), and Hg are likely transported as volatile species, even at temperatures slightly above 100°C. The presence of rare sulfides (Ag2S, CuS, and HgS) together with abundant FeS2 in low-temperature fumarolic environments can be explained by the hydrochloric leaching of rock particles followed by the precipitation of low-solubility sulfides induced by the reaction of acid solutions with H2S at ambient temperatures. The elemental composition of native sulfur can be used to qualitatively estimate elemental abundances in low-temperature fumarolic gases.


Lithos ◽  
2020 ◽  
pp. 105880
Author(s):  
Sonja Aulbach ◽  
Andrea Giuliani ◽  
Marco L. Fiorentini ◽  
Raphael J. Baumgartner ◽  
Dany Savard ◽  
...  

2020 ◽  
Vol 132 (9-10) ◽  
pp. 2055-2066
Author(s):  
Teruyuki Maruoka ◽  
Yoshiro Nishio ◽  
Tetsu Kogiso ◽  
Katsuhiko Suzuki ◽  
Takahito Osawa ◽  
...  

Abstract Chalcophile elements are enriched in the Cretaceous–Paleogene (KPg) boundary clays from Stevns Klint, Denmark. As the concentrations of Cu, Ag, and Pb among several chalcophile elements such as Cu, Zn, Ga, As, Ag, and Pb are correlated with those of Ir, we suggest that these elements were supplied to the oceans by processes related to the end-Cretaceous asteroid impact. Synchrotron X-ray fluorescence images revealed that Cu and Ag exist as trace elements in pyrite grains or as 1–10-µm-sized discrete phases specifically enriched in Cu or Ag. The difference in carrier phases might depend on the materials that transported these elements to the seafloor. Based on their affinities with Cu, Ag, and Ir, iron oxides/hydroxides and organic matter were identified as the potential carrier phases that supplied these elements to the seafloor. Chalcophile elements adsorbed on iron oxides/hydroxides might have been released during reductive dissolution of iron oxides/hydroxides and incorporated into the pyrite produced simultaneously with the reductive dissolution of iron oxides/hydroxides. Both iron oxides/hydroxides and chalcophile elements were possibly released from the KPg target rocks (i.e., sedimentary rocks and/or basement crystalline rocks) by impact heating. Elements with a high affinity to organic matter would have been released upon its degradation and then converted into discrete minerals because of the deficiency in Fe ions. As such discrete minerals include the elements that form acid soluble sulfides such as Cu, Ag, and Pb, enrichment of these elements might have been induced by the intense acid rain just after the end-Cretaceous asteroid impact.


Sign in / Sign up

Export Citation Format

Share Document