Including London Dispersion Forces in Density Functional Theory (DFT + D): Applications to Molecule(Atom)/Surface Phenomena

Author(s):  
C. Díaz ◽  
Y. Wang ◽  
F. Martín
2020 ◽  
Vol 224 ◽  
pp. 145-165
Author(s):  
Derk Pieter Kooi ◽  
Paola Gori-Giorgi

We analyse a path to construct density functionals for the dispersion interaction energy from an expression in terms of the ground state densities and exchange–correlation holes of the isolated fragments.


2019 ◽  
Vol 21 (21) ◽  
pp. 10888-10894
Author(s):  
Jorge Ontaneda ◽  
Francesc Viñes ◽  
Francesc Illas ◽  
Ricardo Grau-Crespo

Density functional theory calculations with non-local correlation functionals, properly accounting for dispersion forces, predict the presence of two minima in the interaction energy between h-BN and Ni(111).


BIBECHANA ◽  
2014 ◽  
Vol 11 ◽  
pp. 113-122 ◽  
Author(s):  
S Lamichhane ◽  
N Pantha ◽  
NP Adhikari

Adsorption of gaseous/molecular hydrogen on platinum (Pt) decorated and pristine graphene have been studied systematically by using density functional theory (DFT) level of calculations implemented by Quantum ESPRESSO codes. The Perdew-Burke-Ernzerhof (PBE) type generalized gradient approximation (GGA) exchange-correlation functional and London dispersion forces have been incorporated in the DFT-D2 level of algorithm for short and long range electron-electron interactions, respectively. With reference to the binding energy of Pt on different symmetry sites of graphene supercells, the bridge (B) site has been predicted as the best adsorption site. In case of 3×3 supercell of graphene (used for detail calculations), the binding energy has been estimated as 2.02 eV. The band structure and density of states calculations of Pt adatom graphene predict changes in electronic/magnetic properties caused by the atom (Pt). The adatom (Pt) also enhances the binding energy per hydrogen molecule in Pt-graphene comparing to that in pristine graphene and records the values within the range of 1.84 eV to 0.13 eV for one to eight molecules, respectively. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10389 BIBECHANA 11(1) (2014) 113-122


Sign in / Sign up

Export Citation Format

Share Document