surface active
Recently Published Documents


TOTAL DOCUMENTS

5236
(FIVE YEARS 679)

H-INDEX

93
(FIVE YEARS 10)

2022 ◽  
Vol 325 ◽  
pp. 107749
Author(s):  
Eva Kinnebrew ◽  
Deborah A. Neher ◽  
Taylor H. Ricketts ◽  
Kimberly F. Wallin ◽  
Heather Darby ◽  
...  

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 186
Author(s):  
Pascale Subra-Paternault ◽  
Maria del Pilar Garcia-Mendoza ◽  
Raphaëlle Savoire ◽  
Christelle Harscoat-Schiavo

The objective was to evaluate the performance of four hydro-alcoholic solvents to simultaneously extract oil and more polar molecules as phenolics, among others, to produce complex extracts that eventually could self-emulsify after solvent removal. Walnut press-cake was selected as the sourcing material. Extractions were performed as a semi-continuous operation up to a solvent-to-solid ratio of 28, with a fractional collection of the effluent. Among the solvents, labelled by their alcohol content EtOH 58, EtOH 86, iPro 60 and iPro 90 for ethanol (EtOH) and isopropanol (iPro), iPro 90 allowed to reach an oil extraction efficiency of 97% while the recovery for the other solvents was in the range of 30–40%. For both alcohols, the increase of the solvent hydration negatively influenced the oil extraction but positively increased the recovery of phenolics that reached 17.6 mg GAE/gcake when EtOH 58 was used. Several fractions contained enough surface-active material and oil to self-assemble as emulsions. IPro 90 and EtOH 86 showed better performances in the sense that most extracts were able to emulsify, though extraction kinetics pointed out differences. The most hydrated solvents behaved equally, with extraction yields in the same range and a similar but limited emulsifying capacity of only few fractions.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Richard J. G. Löffler ◽  
Martin M. Hanczyc ◽  
Jerzy Gorecki

AbstractIn a recently published paper (doi.org/10.3390/molecules26113116) on self-propelled motion of objects on the water surface, we described a novel surface-active plastic material obtained by dissolution of camphor and polypropylene in camphene at 250 $$^\circ$$ ∘ C. The material has wax-like mechanical properties, can be easily formed to any moldable shape, and allows for longer and more stable self-propelled motion if compared with pure camphor or pure camphene or of a camphene-camphor wax. Here we use scanning electron microscopy to visualize and characterize the microporous structure of the solid polypropylene foam formed in the plastic for different polypropylene contents. The topology of foams remaining in the material after camphor and camphene molecules have been removed through evaporation or dissolution is similar to polypropylene foams obtained using thermally-induced phase separation. We show that the foams have a superhydrophobic surface but strongly absorb non-polar liquids, and suggest an array of potential scientific and industrial applications.


2022 ◽  
Author(s):  
Yufen Han ◽  
Jiaqian Li ◽  
Xiaojin Zhang ◽  
Fan Xia ◽  
Yu Dai

Abstract Regulating catalytic activity plays an important role in further optimizing and developing multifunctional catalysts with high selectivity and high activity. Reversible dual regulation of catalytic activity has always been a challenging task. Here, we prepared poly(N-isopropylacrylamide)-anchored gold nanoparticles (AuNP@CDs-Azo-PNIPAM) through host-guest interaction of cyclodextrin capped gold nanoparticles (AuNP@CDs) and azobenzene-terminated poly(N-isopropylacrylamide) (Azo-PNIPAM). Azo-PNIPAM as thermal and light responsive ligand allows reversible dual regulation of catalytic activity. When the temperature is higher than the lowest critical solution temperature (LCST), the PNIPAM chain shrinks rapidly, increasing the steric hindrance around AuNPs and reducing the catalytic activity. Under ultraviolet light irradiation, cis-azobenzene disassembles from cyclodextrin and the number of surface active sites of AuNPs increases, which improves the catalytic activity. The reaction rate of UV irradiation is almost 1.3 times that of visible light irradiation. This work provides a simple and effective strategy for the construction of reversible catalysts.


Author(s):  
Jules Delacroix ◽  
Pascal Piluso ◽  
Nourdine Chikhi ◽  
Olivier Asserin ◽  
Damien Borel ◽  
...  

2022 ◽  
Vol 208 ◽  
pp. 109414
Author(s):  
Jincheng Gong ◽  
Yanfeng Ji ◽  
Yanling Wang ◽  
Haiming Fan ◽  
Zhiyi Wei ◽  
...  

2022 ◽  
Author(s):  
Kiran Kousar ◽  
Michael Dowhyj ◽  
Monika Walczak ◽  
Thomas Ljungdahl ◽  
Alexander Wetzel ◽  
...  

In many engineering scenarios, surface-active organic species are added to acidic solutions to inhibit the corrosion of metallic components. Given suitable selection, such corrosion inhibitors are highly effective, preventing significant...


2021 ◽  
Author(s):  
Weiqin Wei ◽  
Zhen Wei ◽  
Ruizhe Li ◽  
zhenhua Li ◽  
Run Shi ◽  
...  

Abstract Oxygen defects play an important role in many catalytic reactions. Increasing surface oxygen defects can be done through reduction treatment. However, excessive reduction blocks electron channels and deactivates the catalyst surface due to electron-trapped effects by subsurface oxygen defects. How to effectively extract electrons from subsurface oxygen defects which cannot directly interact with reactants is challenging and remains elusive. Herein, we report a metallic In-embedded In2O3 nanoflake catalyst over which the turnover frequency of CO2 reduction into CO increases by a factor of 866 (7615 h-1) and 376 (2990 h-1) at same light intensity and reaction temperature, respectively, compared to In2O3. Under electron-delocalization effect of O-In-(O)Vo-In-In structural units at the interface, the electrons in the subsurface oxygen defects are extracted and gather at surface active sites. This improves the electronic coupling with CO2 and stabilizes COOH intermediate. The study opens up new insights for exquisite electronic manipulation of oxygen defects.


Sign in / Sign up

Export Citation Format

Share Document