london dispersion
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 77)

H-INDEX

38
(FIVE YEARS 6)

Author(s):  
Chiara Di Berardino ◽  
Marcel A. Strauss ◽  
Dominic Schatz ◽  
Hermann Andreas Wegner
Keyword(s):  

2022 ◽  
Author(s):  
Jan Řezáč

The Non-Covalent Interactions Atlas (www.nciatlas.org) has been extended with two data sets of benchmark interaction energies in complexes dominated by London dispersion. The D1200 data set of equilibrium geometries provides a thorough sampling of an extended chemical space, while the D442×10 set features dissociation curves for selected complexes. In total, they provide 5,178 new CCSD(T)/CBS data points of the highest quality. The new data have been combined with previous NCIA data sets in a comprehensive test of dispersion-corrected DFT methods, identifying the ones that achieve high accuracy in all types of non-covalent interactions in a broad chemical space. Additional tests of dispersion-corrected MP2 and semiempirical QM methods are also reported.


2021 ◽  
Author(s):  
Markus Bursch ◽  
Hagen Neugebauer ◽  
Sebastian Ehlert ◽  
Stefan Grimme

The re-regularized semilocal meta generalized gradient approximation (meta-GGA) exchange-correlation functional r2SCAN [J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, J. Phys. Chem. Lett. 11, 8208–8215 (2020)] is used to create the three global hybrid functionals with varying admixtures of Hartree–Fock exact exchange (HFX). The resulting exchange-correlation functionals r2SCANh (10% HFX), r2SCAN0 (25% HFX), and r2SCAN50 (50%HFX) are combined with the recent semi-classical D4 London dispersion correction. The new functionals are assessed for molecular geometries, general main-group, and metalorganic thermochemistry at 26 comprehensive benchmark sets including such as the large GMTKN55, ROST61, and IONPI19 sets. It is shown that a moderate admixture of HFX leads to overall mean percentual improvements of −11 (r2SCANh-D4), −16 (r2SCAN0-D4), and −1% (r2SCAN50-D4) regarding thermochemistry compared to the parental meta-GGA. For organometallic reaction energies and barriers, r2SCAN0-D4 even yields a mean improvement of −35%. The computation of structural parameters does not systematically profit from HFX admixture. Overall, the most promising combination r2SCAN0-D4 performs well for both main-group and organometallic thermochemistry. It yields deviations better or on par with other very well-performing global hybrid functionals such as PW6B95-D4 or PBE0-D4. Regarding systems prone to self-interaction errors (SIE4x4), r2SCAN0-D4 shows reasonable performance, reaching the quality of the range-separated ωB97X-V functional. Accordingly, r2SCAN0-D4 in combination with a sufficiently converged basis set (def2-QZVP(P)) represents a robust and reliable choice for general use in the calculation of thermochemical properties of both, main-group and organometallic chemistry.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2591
Author(s):  
Noureddine Mahdhi ◽  
Norah Salem Alsaiari ◽  
Fatimah Mohammed Alzahrani ◽  
Khadijah Mohammedsaleh Katubi ◽  
Abdelfattah Amari ◽  
...  

The removal of heavy metals from drinking water has attracted great interest in water purification technology. In this study, a biocompatible Polyaniline (PANI) polymer filled with TiO2 and ZnO nanoparticles (NPs) is considered as an adsorbent of cadmium iodide from water. Theoretical investigation of the van der Waals (vdW) interactions deduced from the Hamaker constant calculated on the basis of Lifshitz theory was presented. It was found that the surface energy as well as the work of adhesion between water and PANI/NPs across air increases with an increasing volume fraction of the TiO2 and ZnO nanoparticles. Consequently, an increase in the Laplace pressure around the cavities/porosities was found, which leads to the enhancement of the specific contact surface between water and PANI/NPs. On the other hand, for the interactions between CdI2 particles and PANI/NPs surface across water, we show that the interactions are governed principally by the attractive London dispersion forces. The vdW energy and force increase proportionally with the augmentation of the volume fraction of nanoparticles and of the radius of the CdI2 particle. Particularly, the PANI/TiO2 has been proved to be a better candidate for adsorption of cadmium iodide from water than PANI/ZnO.


2021 ◽  
pp. 121919
Author(s):  
Wenjie Yang ◽  
Zihan Yan ◽  
Kangjin Zhang ◽  
Wenyan Wang ◽  
Shuqi Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document