Manufacturing of Ceramic Components using Robust Integration Technologies

Author(s):  
Mrityunjay Singh ◽  
Naoki Kondo ◽  
R. Asthana
2021 ◽  
Vol 23 ◽  
pp. 101005
Author(s):  
Kai Huang ◽  
Hamada Elsayed ◽  
Giorgia Franchin ◽  
Paolo Colombo

Open Ceramics ◽  
2021 ◽  
pp. 100089
Author(s):  
Oscar Santoliquido ◽  
Francesco Camerota ◽  
Alice Rosa ◽  
Alberto Ortona

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 209
Author(s):  
Patrick Kiele ◽  
Jan Hergesell ◽  
Melanie Bühler ◽  
Tim Boretius ◽  
Gregg Suaning ◽  
...  

Neural implants provide effective treatment and diagnosis options for diseases where pharmaceutical therapies are missing or ineffective. These active implantable medical devices (AIMDs) are designed to remain implanted and functional over decades. A key factor for achieving reliability and longevity are cleaning procedures used during manufacturing to prevent failures associated with contaminations. The Implantable Devices Group (IDG) at University College London (UCL) pioneered an approach which involved a cocktail of reagents described as “Leslie’s soup”. This process proved to be successful but no extensive evaluation of this method and the cocktail’s ingredients have been reported so far. Our study addressed this gap by a comprehensive analysis of the efficacy of this cleaning method. Surface analysis techniques complemented adhesion strengths methods to identify residues of contaminants like welding flux, solder residues or grease during typical assembly processes. Quantitative data prove the suitability of “Leslie’s soup” for cleaning of ceramic components during active implant assembly when residual ionic contaminations were removed by further treatment with isopropanol and deionised water. Solder and flux contaminations were removed without further mechanical cleaning. The adhesive strength of screen-printed metalisation layers increased from 12.50 ± 3.83 MPa without initial cleaning to 21.71 ± 1.85 MPa. We conclude that cleaning procedures during manufacturing of AIMDs, especially the understanding of applicability and limitations, is of central importance for their reliable and longevity.


2010 ◽  
Vol 62 ◽  
pp. 203-208 ◽  
Author(s):  
Pasquale Bene ◽  
Danilo Bardaro ◽  
Daniela Bello ◽  
Orazio Manni

The aim of the work is the study of the pyroplasticity in ceramic materials in order to simulate the deformations of complex ceramic component during sintering. A ceramic material undergoing densification can be treated as a linear viscous material. Generally, the viscosity decreases as the temperature increases, however the densification and the consequent grain growth, result in a viscosity increase. A bending creep test is proposed for measuring the change in viscosity of the ceramic material during densification. Equations, based on beam deflection theory, are derived to determine the viscosity during the whole firing cycle by measuring the deflection in the centre of specimens. In addition, dilatometric analyses are performed to measure the sintering shrinkage and the specimen density, which continuously changes during the sintering process. On the basis of an accurate experimental characterization the parameters of Maxwell viscoelastic constitutive law are derived. A numerical-experimental procedure has been adopted in order to calibrate the numerical model that, finally, has been used to predict the pyroplastic deformations of complex ceramic components.


2016 ◽  
Vol 367 ◽  
pp. 86-95
Author(s):  
Osmar Roberto Bagnato ◽  
R.F. Francisco ◽  
A.L. Gobbi ◽  
Tatiane Falvo ◽  
P.M. Pimentel

The Sirius Project is an initiative of the Brazilian Synchrotron Light Laboratory - LNLS (CNPEM - MCTI), for the design, construction and operation of a new synchrotron radiation source 3rd generation, with high brightness and energy of the electrons of 3.0 GeV. Among many other components there will be built 80 ceramic cameras embedded in special magnets, whose function is to act to correct the orbit of the electron beam in the storage ring. The ceramic chamber is crucial for this application because this material is transparent to the magnetic field generated in the electro magnet and thus acts directly on the electron beam. The difficulty of these constructive components lies in the fact that, the ceramic components must be attached to metal components will join vacuum chambers that make up the ring, and then must present excellent mechanical and vacuum tight. The process of chemical bonding between the ceramic and metal components is performed by brazing in high vacuum. After brazing, a film is deposited of copper with 7 micrometers thickness. The objective of this paper is to describe the process of film deposition and brazing of copper and the excellent results obtained in the production, mechanical characterization, microstructural and tightness.


Sign in / Sign up

Export Citation Format

Share Document