NMR Studies on the Dynamics of Hydrogen Bonds and Ion Pairs Involving Lysine Side Chains of Proteins

Author(s):  
Levani Zandarashvili ◽  
Alexandre Esadze ◽  
Junji Iwahara
2003 ◽  
Vol 59 (11) ◽  
pp. o622-o624 ◽  
Author(s):  
Bruce D. James ◽  
Siti Mutrofin ◽  
Brian W. Skelton ◽  
Allan H. White

Structural characterization of the title compound, C10H15N2 +·PF6 −, shows it to be ionic, with the pyridine rather than the piperidine N atom being protonated and forming hydrogen bonds to the counter-ions, resulting in two independent ion pairs. A number of unusual features are noted, in particular the remarkably close inter-ring hydrogen contacts [1.97 (3)–2.00 (3) Å] and the considerable differences in the pair of cations, in respect of the torsion angles within the piperidine ring involving the bonds to either side of the N atom.


2001 ◽  
Vol 79 (2) ◽  
pp. 238-255 ◽  
Author(s):  
Ulrike Spohr ◽  
Nghia Le ◽  
Chang-Chun Ling ◽  
Raymond U Lemieux

The epimeric (6aR)- and (6aS)-C-alkyl (methyl, ethyl and isopropyl) derivatives of methyl α-isomaltoside (1) were synthesized in order to examine the effects of introducing alkyl groups of increasing bulk on the rate of catalysis for the hydrolysis of the interunit α-glycosidic bond by the enzyme amyloglucosidase, EC 3.2.1.3, commonly termed glucoamylase (AMG). It was previously established that methyl (6aR)-C-methyl α-isomaltoside is hydrolysed about 2 times faster than methyl α-isomaltoside and about 8 times faster than its S-isomer. The kinetics for the hydrolyses of the ethyl and isopropyl analogs were also recently published. As was expected from molecular model calculations, all the R-epimers are good substrates. A rationale is presented for the catalysis based on conventional mechanistic theories that includes the assistance for the decomposition of the activated complex to products by the presence of a hydrogen bond, which connects the 4a-hydroxyl group to the tryptophane and arginine units. It is proposed that activation of the initially formed complex to the transition state is assisted by the energy released as a result of both of the displacement of perturbed water molecules of hydration at the surfaces of both the polyamphiphilic substrate and the combining site and the establishment of intermolecular hydrogen bonds, i.e., micro-thermodynamics. The dissipation of the heat to the bulk solution is impeded by a shell of aromatic amino acids that surround the combining site. Such shields are known to be located around the combining sites of lectins and carbohydrate specific antibodies and are considered necessary to prevent the disruption of the intermolecular hydrogen bonds, which are of key importance for the stability of the complex. These features together with the exquisite stereoelectronic dispositions of the reacting molecules within the combining site offer a rationalization for the catalysis at ambient temperatures and near neutral pH. The syntheses involved the addition of alkyl Grignard reagents to methyl 6-aldehydo-α-D-glucopyranoside. The addition favoured formation of the S-epimers by over 90%. Useful amounts of the active R-isomers were obtained by epimerization of the chiral centers using conventional methods. Glycosylation of the resulting alcohols under conditions for bromide-ion catalysis, provided methyl (6aS)- and (6aR)-C-alkyl-hepta-O-benzyl-α-isomaltosides. Catalytic hydrogenolysis of the benzyl groups afforded the desired disaccharides. 1H NMR studies established the absolute configurations and provided evidence for conformational preferences.Key words: amyloglucosidase (AMG), exo-anomeric effect, 6-C-alkyl-α-D-glucopyranosides and isomaltosides, mechanism of enzyme catalysis.


IUCrData ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
P. Sivakumar ◽  
G. Ezhamani ◽  
S. Israel ◽  
G. Chakkaravarthi

In the title hydrated molecular salt, C6H9N2+·C8H7O3−·2H2O, the cation is protonated at the pyridine N atom. The cation and anion are linked by a pair of N—H...O hydrogen bonds, which generates anR22(8) loop, and the dihedral angle between their ring planes is 16.07 (14)°. The ion pairs are linked by O—H...O hydrogen bonds involving the water molecules, generating a three-dimensional network. Weak C—H...O and aromatic π–π stacking [centroid-to-centroid distance = 3.5874 (17) Å] interactions are also observed.


2012 ◽  
Vol 116 (46) ◽  
pp. 11370-11387 ◽  
Author(s):  
Brenda C. K. Ip ◽  
Ilya G. Shenderovich ◽  
Peter M. Tolstoy ◽  
Jaroslaw Frydel ◽  
Gleb S. Denisov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document