OPTIMUM INTERVAL ESTIMATION FOR THE LARGEST SCALE PARAMETER

Author(s):  
K.M. Lai Saxena ◽  
Yung Liang Tong
1995 ◽  
Vol 18 (2) ◽  
pp. 383-390
Author(s):  
Z. Govindarajulu

Sequential fixed-width confidence intervals are obtained for the scale parameterσwhen the location parameterθof the negative exponential distribution is unknown. Exact expressions for the stopping time and the confidence coefficient associated with the sequential fixed-width interval are derived. Also derived is the exact expression for the stopping time of sequential point estimation with quadratic loss and linear cost. These are numerically evaluated for certain nominal confidence coefficients, widths of the interval and cost functions, and are compared with the second order asymptotic expressions.


2021 ◽  
Vol 50 (1) ◽  
pp. 59-73
Author(s):  
Young Eun Jeon ◽  
Suk-Bok Kang

We derive some estimators of the scale parameter of the Rayleigh distribution under the unified hybrid censoring scheme. We also derive some estimators of the reliability function and the entropy of the Rayleigh distribution. First, we obtain the maximum likelihood estimator of the scale parameter. Second, we obtain the Bayes estimator using the mean of the posterior distribution. Lastly, we obtain the Bayes estimator using the mode of the posterior distribution. We also derive the interval estimation (confidence interval, credible interval, and HPD credible interval) for the scale parameter under the unified hybrid censoring scheme. We compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation. Coverage probability and average lengths of 95 % and 90% intervals are obtained.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1925 ◽  
Author(s):  
Ali Yousef ◽  
Emad E. H. Hassan ◽  
Ayman A. Amin ◽  
Hosny I. Hamdy

This paper discusses the sequential estimation of the scale parameter of the Rayleigh distribution using the three-stage sequential sampling procedure proposed by Hall (Ann. Stat.1981, 9, 1229–1238). Both point and confidence interval estimation are considered via a unified optimal decision framework, which enables one to make the maximum use of the available data and, at the same time, reduces the number of sampling operations by using bulk samples. The asymptotic characteristics of the proposed sampling procedure are fully discussed for both point and confidence interval estimation. Since the results are asymptotic, Monte Carlo simulation studies are conducted to provide the feel of small, moderate, and large sample size performance in typical situations using the Microsoft Developer Studio software. The procedure enjoys several interesting asymptotic characteristics illustrated by the asymptotic results and supported by simulation.


Sign in / Sign up

Export Citation Format

Share Document