Three-Dimensional Protein Structure Prediction Workshop: Overview and Summary

Author(s):  
Douglas C. Rees
2015 ◽  
Vol 59 ◽  
pp. 142-157 ◽  
Author(s):  
Bruno Borguesan ◽  
Mariel Barbachan e Silva ◽  
Bruno Grisci ◽  
Mario Inostroza-Ponta ◽  
Márcio Dorn

Author(s):  
Arun G. Ingale

To predict the structure of protein from a primary amino acid sequence is computationally difficult. An investigation of the methods and algorithms used to predict protein structure and a thorough knowledge of the function and structure of proteins are critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this chapter sheds light on the methods used for protein structure prediction. This chapter covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, it presents an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction, giving unique insight into the future applications of the modeled protein structures. In this chapter, current protein structure prediction methods are reviewed for a milieu on structure prediction, the prediction of structural fundamentals, tertiary structure prediction, and functional imminent. The basic ideas and advances of these directions are discussed in detail.


2014 ◽  
Vol 53 ◽  
pp. 251-276 ◽  
Author(s):  
Márcio Dorn ◽  
Mariel Barbachan e Silva ◽  
Luciana S. Buriol ◽  
Luis C. Lamb

Author(s):  
Tatsuya Akutsu

This chapter provides an overview of computational problems and techniques for protein threading. Protein threading is one of the most powerful approaches to protein structure prediction, where protein structure prediction is to infer three-dimensional (3-D) protein structure for a given protein sequence. Protein threading can be modeled as an optimization problem. Optimal solutions can be obtained in polynomial time using simple dynamic programming algorithms if profile type score functions are employed. However, this problem is computationally hard (NP-hard) if score functions include pairwise interaction preferences between amino acid residues. Therefore, various algorithms have been developed for finding optimal or near-optimal solutions. This chapter explains the ideas employed in these algorithms. This chapter also gives brief explanations of related problems: protein threading with constraints, comparison of RNA secondary structures and protein structure alignment.


2018 ◽  
Vol 91 ◽  
pp. 160-177 ◽  
Author(s):  
Leonardo de Lima Corrêa ◽  
Bruno Borguesan ◽  
Mathias J. Krause ◽  
Márcio Dorn

2015 ◽  
Vol 11 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Michal Brylinski

AbstractThe Protein Data Bank (PDB) undergoes an exponential expansion in terms of the number of macromolecular structures deposited every year. A pivotal question is how this rapid growth of structural information improves the quality of three-dimensional models constructed by contemporary bioinformatics approaches. To address this problem, we performed a retrospective analysis of the structural coverage of a representative set of proteins using remote homology detected by COMPASS and HHpred. We show that the number of proteins whose structures can be confidently predicted increased during a 9-year period between 2005 and 2014 on account of the PDB growth alone. Nevertheless, this encouraging trend slowed down noticeably around the year 2008 and has yielded insignificant improvements ever since. At the current pace, it is unlikely that the protein structure prediction problem will be solved in the near future using existing template-based modeling techniques. Therefore, further advances in experimental structure determination, qualitatively better approaches in fold recognition, and more accurate template-free structure prediction methods are desperately needed.


Author(s):  
Jiaxi Liu ◽  

The prediction of protein three-dimensional structure from amino acid sequence has been a challenge problem in bioinformatics, owing to the many potential applications for robust protein structure prediction methods. Protein structure prediction is essential to bioscience, and its research results are important for other research areas. Methods for the prediction an才d design of protein structures have advanced dramatically. The prediction of protein structure based on average hydrophobic values is discussed and an improved genetic algorithm is proposed to solve the optimization problem of hydrophobic protein structure prediction. An adjustment operator is designed with the average hydrophobic value to prevent the overlapping of amino acid positions. Finally, some numerical experiments are conducted to verify the feasibility and effectiveness of the proposed algorithm by comparing with the traditional HNN algorithm.


Author(s):  
Tatsuya Akutsu

This chapter provides an overview of computational problems and techniques for protein threading. Protein threading is one of the most powerful approaches to protein structure prediction, where protein structure prediction is to infer three-dimensional (3-D) protein structure for a given protein sequence. Protein threading can be modeled as an optimization problem. Optimal solutions can be obtained in polynomial time using simple dynamic programming algorithms if profile type score functions are employed. However, this problem is computationally hard (NP-hard) if score functions include pairwise interaction preferences between amino acid residues. Therefore, various algorithms have been developed for finding optimal or near-optimal solutions. This chapter explains the ideas employed in these algorithms. This chapter also gives brief explanations of related problems: protein threading with constraints, comparison of RNA secondary structures and protein structure alignment.


2014 ◽  
Vol 2014 ◽  
pp. 1-17
Author(s):  
Mahmood A. Rashid ◽  
Swakkhar Shatabda ◽  
M. A. Hakim Newton ◽  
Md Tamjidul Hoque ◽  
Abdul Sattar

Protein structure prediction is computationally a very challenging problem. A large number of existing search algorithms attempt to solve the problem by exploring possible structures and finding the one with the minimum free energy. However, these algorithms perform poorly on large sized proteins due to an astronomically wide search space. In this paper, we present a multipoint spiral search framework that uses parallel processing techniques to expedite exploration by starting from different points. In our approach, a set of random initial solutions are generated and distributed to different threads. We allow each thread to run for a predefined period of time. The improved solutions are stored threadwise. When the threads finish, the solutions are merged together and the duplicates are removed. A selected distinct set of solutions are then split to different threads again. In our ab initio protein structure prediction method, we use the three-dimensional face-centred-cubic lattice for structure-backbone mapping. We use both the low resolution hydrophobic-polar energy model and the high-resolution 20×20 energy model for search guiding. The experimental results show that our new parallel framework significantly improves the results obtained by the state-of-the-art single-point search approaches for both energy models on three-dimensional face-centred-cubic lattice. We also experimentally show the effectiveness of mixing energy models within parallel threads.


2010 ◽  
Vol 18 (2) ◽  
pp. 255-275 ◽  
Author(s):  
Milan Mijajlovic ◽  
Mark J. Biggs ◽  
Dusan P. Djurdjevic

Ab initio protein structure prediction involves determination of the three-dimensional (3D) conformation of proteins on the basis of their amino acid sequence, a potential energy (PE) model that captures the physics of the interatomic interactions, and a method to search for and identify the global minimum in the PE (or free energy) surface such as an evolutionary algorithm (EA). Many PE models have been proposed over the past three decades and more. There is currently no understanding of how the behavior of an EA is affected by the PE model used. The study reported here shows that the EA behavior can be profoundly affected: the EA performance obtained when using the ECEPP PE model is significantly worse than that obtained when using the Amber, OPLS, and CVFF PE models, and the optimal EA control parameter values for the ECEPP model also differ significantly from those associated with the other models.


Sign in / Sign up

Export Citation Format

Share Document