Measuring Storm Tide and High-water Marks Caused by Hurricane Sandy in New York

Author(s):  
A.E. Simonson ◽  
R. Behrens
2010 ◽  
Vol 49 (1) ◽  
pp. 85-100 ◽  
Author(s):  
Brian A. Colle ◽  
Katherine Rojowsky ◽  
Frank Buonaito

Abstract A climatological description (“climatology”) of storm surges and actual flooding (storm tide) events from 1959 to 2007 is presented for the New York City (NYC) harbor. The prevailing meteorological conditions associated with these surges are also highlighted. Two surge thresholds of 0.6–1.0 m and >1.0 m were used at the Battery, New York (south side of Manhattan in NYC), to identify minor and moderate events, respectively. The minor-surge threshold combined with a tide at or above mean high water (MHW) favors a coastal flood advisory for NYC, and the moderate surge above MHW leads to a coastal flood warning. The number of minor surges has decreased gradually during the last several decades at NYC while the number of minor (storm tide) flooding events has increased slightly given the gradual rise in sea level. There were no moderate flooding events at the Battery from 1997 to 2007, which is the quietest period during the last 50 yr. However, if sea level rises 12–50 cm during the next century, the number of moderate flooding events is likely to increase exponentially. Using cyclone tracking and compositing of the NCEP global reanalysis (before 1979) and regional reanalysis (after 1978) data, the mean synoptic evolution was obtained for the NYC surge events. There are a variety of storm tracks associated with minor surges, whereas moderate surges favor a cyclone tracking northward along the East Coast. The average surface winds at NYC veer from northwesterly at 48 h before the time of maximum surge to a persistent period of east-northeasterlies beginning about 24 h before the surge. There is a relatively large variance in wind directions and speeds around the time of maximum surge, thus suggesting the importance of other factors (fetch, storm duration and track, etc.).


2015 ◽  
pp. 1-75 ◽  
Author(s):  
Christopher E. Schubert ◽  
Ronald J. Busciolano ◽  
Paul P. Hearn ◽  
Ami N. Rahav ◽  
Riley Behrens ◽  
...  
Keyword(s):  
New York ◽  

Data Series ◽  
10.3133/ds888 ◽  
2014 ◽  
Author(s):  
C. Wayne Wright ◽  
Christine J. Kranenburg ◽  
Emily S. Klipp ◽  
Rodolfo J. Troche ◽  
Xan Fredericks ◽  
...  

Shore & Beach ◽  
2019 ◽  
pp. 29-35
Author(s):  
Michele Strazzella ◽  
Nobuhisa Kobayashu ◽  
Tingting Zhu

A simple approach based on an analytical model and available tide gauge data is proposed for the analysis of storm tide damping inside inland bays with complex bathymetry and for the prediction of peak water levels at gauge locations during storms. The approach was applied to eight tide gauges in the vicinity of inland bays in Delaware. Peak water levels at the gauge locations were analyzed for 34 storms during 2005-2017. A damping parameter in the analytical model was calibrated for each bay gauge. The calibrated model predicted the peak water levels within errors of about 0.2 m except for Hurricane Sandy in 2012. The analytical model including wave overtopping was used to estimate the peak wave overtopping rate over the barrier beach from the measured peak water level in the adjacent bay.


Eos ◽  
2013 ◽  
Vol 94 (37) ◽  
pp. 323-323
Author(s):  
Ernie Balcerak
Keyword(s):  
New York ◽  

1999 ◽  
Vol 45 (150) ◽  
pp. 201-213 ◽  
Author(s):  
E.M. Shoemaker

AbstractThe effect of subglacial lakes upon ice-sheet topography and the velocity patterns of subglacial water-sheet floods is investigated. A subglacial lake in the combined Michigan–Green Bay basin, Great Lakes, North America, leads to: (1) an ice-sheet lobe in the lee of Lake Michigan; (2) a change in orientations of flood velocities across the site of a supraglacial trough aligned closely with Green Bay, in agreement with drumlin orientations; (3) low water velocities in the lee of Lake Michigan where drumlins are absent; and (4) drumlinization occurring in regions of predicted high water velocities. The extraordinary divergence of drumlin orientations near Lake Ontario is explained by the presence of subglacial lakes in the Ontario and Erie basins, along with ice-sheet displacements of up to 30 km in eastern Lake Ontario. The megagrooves on the islands in western Lake Erie are likely to be the product of the late stage of a water-sheet flood when outflow from eastern Lake Ontario was dammed by displaced ice and instead flowed westward along the Erie basin. The Finger Lakes of northern New York state, northeastern U.S.A., occur in a region of likely ice-sheet grounding where water sheets became channelized. Green Bay and Grand Traverse Bay are probably the products of erosion along paths of strongly convergent water-sheet flow.


2011 ◽  
Vol 27 (2) ◽  
pp. 114-140
Author(s):  
Michael A. Morrison

Paul Robeson's Othello, first seen in London during the season of 1929–30, stands as a high-water mark of twentieth-century Shakespearean interpretation. Robeson was the first actor of African descent to appear in an extended-run Shakespearean production at a leading West End venue (Ira Aldridge, whose last London appearance came sixty-five years earlier, had made only three brief appearances at major London theatres). Here, Michael A. Morrison examines the circumstances surrounding Robeson's London Othello in 1930 and the far-reaching influence of his achievement on future generations of performers and playgoers. Michael A. Morrison is a New York-based writer and teacher. He is the author of John Barrymore, Shakespearean Actor (Cambridge University Press, 1997) and the forthcoming Paul Robeson's Othello.


2017 ◽  
Vol 21 (4) ◽  
pp. 139-150 ◽  
Author(s):  
William Solecki ◽  
Robin Leichenko ◽  
David Eisenhauer

AbstractIt is five years since Hurricane Sandy heavily damaged the New York- New Jersey Metropolitan region, and the fuller character of the long-term response can be better understood. The long-term response to Hurricane Sandy and the flooding risks it illustrated are set in myriad of individual and collective decisions taken during the time following the event. While the physical vulnerability of this region to storm surge flooding and climate change risks including sea level rise has been well-documented within the scholarly literature, Sandy’s impact placed decision-makingpost extreme events into the forefront of public and private discussions about the appropriate response. Some of the most fundamental choices were made by individual homeowners who houses were damaged and in some cases made uninhabitable following the storm. These individuals were forced to make decisions regarding where they would live and whether Sandy’s impact would result in their moving. In the disaster recovery and rebuilding context, these early household struggles about whether to leave or stay are often lost in the wider and longer narrative of recovery. To examine this early phase, this paper presents results of a research study that documented the ephemeral evidence of the initial phase of recovery in coastal communities that were heavily impacted by Hurricane Sandy’s storm surge and flooding. Hurricane Sandy and the immediate response to the storm created conditions for a potential large-scale transformation with respect to settlement of the coastal zone. In the paper, we examine and analyze survey and interview results of sixty-one residents and two dozen local stakeholders and practitioners to understand the stresses and transitions experienced by flooded households and the implications for the longer term resiliency of the communities in which they are located.


1986 ◽  
Vol 1 (20) ◽  
pp. 181
Author(s):  
H. Lee Butler ◽  
Mark D. Prater

Reliable estimates of coastal flooding from tides and storm surges are required for making sound engineering decisions regarding the design, operation and maintenance of many coastal projects. A recent investigation of flood frequency along the coast and within the bays of southern Long Island, New York, produced new and optimal approaches to obtain meaningful statistical estimates of flood levels. This paper summarizes various elements of the study and concentrates on the problem of stage-frequency computations in the inland bay areas. Methods for optimizing the number of necessary storm/tide simulations and estimating the accuracy of results are presented.


Sign in / Sign up

Export Citation Format

Share Document