damping parameter
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 42)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
pp. 1-1
Author(s):  
Isaac Ng ◽  
Ruizi Liu ◽  
Zheyu Ren ◽  
Se Kwon Kim ◽  
Qiming Shao

Author(s):  
Omar Sadek ◽  
Atef Mohany ◽  
Marwan A. Hassan

Abstract For decades, fluidelastic instability (FEI) has been known to cause dramatic mechanical failures in tube bundles. Therefore, it has been extensively studied to mitigate its catastrophic consequences. Most of these studies were conducted in controlled experiments where significant simplifications to the geometry and flow conditions were utilized. One of these simplifications is the assumption that all tubes have the same dynamic characteristics. However, in steam generators with U-bend tube configuration, the natural frequencies of tubes are nonuniform due to manufacturing tolerances and tubes' curvature in the U-bend region. Thus, this investigation aims to understand the rule of frequency variation (detuning) on FEI in two-phase flow. This includes investigating the effect of detuning on transverse and streamwise FEI for air-water mixture flow. The role of FEI damping and stiffness couplings was investigated over the entire range of air void fraction, or equivalently, the mass-damping parameter. It was found that frequency detuning could elevate the stability threshold caused by either coupling at high air void fraction in the case of transverse FEI. Furthermore, the frequency detuning had a marginal effect on the stability threshold for water flow. It was observed that the mass-damping parameter has a critical impact on FEI under detuning conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Ohshima ◽  
Yuto Kohsaka ◽  
Yuichiro Ando ◽  
Teruya Shinjo ◽  
Masashi Shiraishi

AbstractThe spin Hall effect (SHE) and inverse spin Hall effect (ISHE) have played central roles in modern condensed matter physics especially in spintronics and spin-orbitronics, and much effort has been paid to fundamental and application-oriented research towards the discovery of novel spin–orbit physics and the creation of novel spintronic devices. However, studies on gate-tunability of such spintronics devices have been limited, because most of them are made of metallic materials, where the high bulk carrier densities hinder the tuning of physical properties by gating. Here, we show an experimental demonstration of the gate-tunable spin–orbit torque in Pt/Ni80Fe20 (Py) devices by controlling the SHE using nanometer-thick Pt with low carrier densities and ionic gating. The Gilbert damping parameter of Py and the spin-memory loss at the Pt/Py interface were modulated by ionic gating to Pt, which are compelling results for the successful tuning of spin–orbit interaction in Pt.


Author(s):  
Nemanja Andonovski ◽  
Ivana Kovacic ◽  
Stefano Lenci

Abstract This work is concerned with a mechanical model of a sympodial tree with first-level branches, which has been shown to exhibit certain properties potentially suitable for biomimetic applications. To investigate these potential benefits further from the viewpoint of the system nonlinear behaviour under external periodic excitation, modern numerical tools related to the concept of dynamical integrity are either adjusted or newly developed for this system for the first time. First, multistable regions of interest are isolated from bifurcation diagrams and the effect of damping is investigated. Then, in order to obtain the corresponding basins of attraction of this highly dimensional model, an original computational procedure is developed that includes cell mapping with 406 cells, where each cell represents an initial condition required to construct the map. Full 6D basins are computed, and they are reported for various values of the damping parameter and the excitation frequency. Those basins are then used to calculate the dynamic integrity factors so that the dominant steady state can be determined. Finally, the integrity profiles are reported to illustrate how the robustness varies by changing the system parameters.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5852
Author(s):  
Feven Mattews Michael ◽  
Mohammad Khalid ◽  
Gunasunderi Raju ◽  
Chantara Thevy Ratnam ◽  
Rashmi Walvekar ◽  
...  

We studied the reinforcing effects of treated and untreated nanohydroxyapatite (NHA) on poly-lactic acid (PLA). The NHA surface was treated with three different types of chemicals; 3-aminopropyl triethoxysilane (APTES), sodium n-dodecyl sulfate (SDS) and polyethylenimine (PEI). The nanocomposite samples were prepared using melt mixing techniques by blending 5 wt% untreated NHA and 5 wt% surface-treated NHA (mNHA). Based on the FESEM images, the interfacial adhesion between the mNHA filler and PLA matrix was improved upon surface treatment in the order of mNHA (APTES) > mNHA (SDS) > mNHA (PEI). As a result, the PLA-5wt%mNHA (APTES) nanocomposite showed increased viscoelastic properties such as storage modulus, damping parameter, and creep permanent deformation compared to pure PLA. Similarly, PLA-5wt%mNHA (APTES) thermal properties improved, attaining higher Tc and Tm than pure PLA, reflecting the enhanced nucleating effect of the mNHA (APTES) filler.


2021 ◽  
Vol 13 (18) ◽  
pp. 3683
Author(s):  
David Vargas ◽  
Ivan Vasconcelos ◽  
Matteo Ravasi ◽  
Nick Luiken

Multidimensional deconvolution constitutes an essential operation in a variety of geophysical scenarios at different scales ranging from reservoir to crustal, as it appears in applications such as surface multiple elimination, target-oriented redatuming, and interferometric body-wave retrieval just to name a few. Depending on the use case, active, microseismic, or teleseismic signals are used to reconstruct the broadband response that would have been recorded between two observation points as if one were a virtual source. Reconstructing such a response relies on the the solution of an ill-conditioned linear inverse problem sensitive to noise and artifacts due to incomplete acquisition, limited sources, and band-limited data. Typically, this inversion is performed in the Fourier domain where the inverse problem is solved per frequency via direct or iterative solvers. While this inversion is in theory meant to remove spurious events from cross-correlation gathers and to correct amplitudes, difficulties arise in the estimation of optimal regularization parameters, which are worsened by the fact they must be estimated at each frequency independently. Here we show the benefits of formulating the problem in the time domain and introduce a number of physical constraints that naturally drive the inversion towards a reduced set of stable, meaningful solutions. By exploiting reciprocity, time causality, and frequency-wavenumber locality a set of preconditioners are included at minimal additional cost as a way to alleviate the dependency on an optimal damping parameter to stabilize the inversion. With an interferometric redatuming example, we demonstrate how our time domain implementation successfully reconstructs the overburden-free reflection response beneath a complex salt body from noise-contaminated up- and down-going transmission responses at the target level.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6145
Author(s):  
Arthur L. R. Souza ◽  
Matheus Gamino ◽  
Armando Ferreira ◽  
Alexandre B. de de Oliveira ◽  
Filipe Vaz ◽  
...  

We investigated the magnetization dynamics through the magnetoimpedance effect in an integrated YIG/Pt-stripline system in the frequency range of 0.5 up to 2.0 GHz. Specifically, we explore the dependence of the dynamic magnetic behavior on the field orientation by analyzing beyond the traditional longitudinal magnetoimpedance effect of the transverse and perpendicular setups. We disclose here the strong dependence of the effective damping parameter on the field orientation, as well as verification of the very-low damping parameter values for the longitudinal and transverse configurations. We find considerable sensitivity results, bringing to light the facilities to integrate ferrimagnetic insulators in current and future technological applications.


2021 ◽  
Vol 94 (9) ◽  
Author(s):  
Robert D. Skeel ◽  
Carsten Hartmann

Abstract This article considers the application of Langevin dynamics to sampling and investigates how to choose the damping parameter in Langevin dynamics for the purpose of maximizing thoroughness of sampling. Also, it considers the computation of measures of sampling thoroughness. Graphic abstract


2021 ◽  
Author(s):  
Ryo Ohshima ◽  
Yuto Kohsaka ◽  
Yuichiro Ando ◽  
Teruya Shinjo ◽  
Masashi Shiraishi

Abstract The spin Hall effect (SHE) and inverse spin Hall effect (ISHE) have played central roles in modern condensed matter physics especially in spintronics and spin-orbitronics, and much effort has been paid to fundamental and application-oriented research towards the discovery of novel spin-orbit physics and the creation of novel spintronic devices. However, studies on gate-tunability of such spintronics devices have been limited, because most of them are made of metallic materials, where the high bulk carrier densities hinder the tuning of physical properties by gating. Here, we show an experimental demonstration of the gate-tunable spin-orbit torque in Pt/Ni80Fe20 (Py) devices by controlling the SHE using nanometer-thick Pt with low carrier densities and ionic gating. The Gilbert damping parameter of Py and the spin-memory loss at the Pt/Py interface were modulated by ionic gating to Pt, which are compelling results for the successful tuning of spin-orbit interaction in Pt.


Sign in / Sign up

Export Citation Format

Share Document