Fractional Control Systems

Author(s):  
Yong Zhou
Author(s):  
Inés Tejado ◽  
S. HosseinNia ◽  
Blas Vinagre

AbstractThis paper deals with the application of adaptive fractional order control to networked control systems (NCSs) to compensate the effects of time-varying network-induced delays. In essence, it adapts both the gains and the orders of a local PIαDμ controller in accordance with the current network condition in order to avoid a decreased control performance. A frequency domain framework is provided to analyze the system stability on the basis of the switching systems theory. The velocity control of a servomotor through the Internet is given to show the effectiveness of the proposed adaptive controller, including a comparison with non- and gain scheduled controllers.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
R. Ganesh ◽  
R. Sakthivel ◽  
N. I. Mahmudov ◽  
S. M. Anthoni

This paper addresses the issue of approximate controllability for a class of control system which is represented by nonlinear fractional integrodifferential equations with nonlocal conditions. By using semigroup theory,p-mean continuity and fractional calculations, a set of sufficient conditions, are formulated and proved for the nonlinear fractional control systems. More precisely, the results are established under the assumption that the corresponding linear system is approximately controllable and functions satisfy non-Lipschitz conditions. The results generalize and improve some known results.


2013 ◽  
Vol 278-280 ◽  
pp. 1635-1638
Author(s):  
Mao Jun Bin ◽  
Yi Liang Liu

This paper is concerned with the controllability of switched linear fractional control systems, and the solutions of expression, necessary and sufficient conditions for the controllability of systems are given later.


Author(s):  
José António Tenreiro Machado ◽  
Behrouz Parsa Moghaddam

AbstractIn this paper, we propose a high-accuracy linear B-spline finite-difference approximation for variable-order (VO) derivative. We consider VO fractional differentiation as a control parameter for improving the stability in systems exhibiting vibrations. The method is applied to nonlinear feedback with VO fractional derivative. The results demonstrate the efficiency and high accuracy of the novel algorithm.


Sign in / Sign up

Export Citation Format

Share Document