Stable Foam Drilling

2021 ◽  
pp. 315-333
Author(s):  
William C. Lyons ◽  
James H. Stanley ◽  
Francisco J. Sinisterra ◽  
Tom Weller
Keyword(s):  
2013 ◽  
Vol 62 (1) ◽  
Author(s):  
Issham Ismail ◽  
Nur Suriani Mamat ◽  
Baihaqi Mamat ◽  
Ahmad Shamsulizwan Ismail ◽  
Azmi Kamis ◽  
...  

An underbalanced drilling using foam drilling fluid is one of the most effective solutions which are capable of preventing formation damage, differential sticking, or circulation lost. Nevertheless, the limitation of using foam drilling fluid is the stability of its rheological properties which would affect its lubricity characteristics. Therefore, a research study was carried out to determine the stability and effectiveness of water soluble polymers as an additive in foam drilling fluid. To produce the required and most stable foam, four types of surfactants had been tested, namely sodium dodecyl sulfate (anionic), cetyltrimethylammonium bromide (cationic), T×100 (non ionic), and n-alkyl betaines (amphoteric). Then, the water soluble polymers, namely xanthan gum, hydroxyethyl cellulose, guar gum, and carboxymethyl cellulose, were evaluated as a stabilizer in the said foam drilling fluid. The laboratory works involved lubricity and rheological properties tests, which were conducted at ambient condition. The experimental results showed that the use of xanthan gum with anionic surfactant produced the most stable foam drilling fluid compared to other polymers. Rheological properties of the polymer foam drilling fluid were compared with water-based mud, and it was revealed that polymer foam drilling fluid could perform as effective as the latter. The significant advantage of using polymer foam drilling fluid was its coefficient of friction which was found to be lower than the water-based mud. 


Author(s):  
Jie Zhang ◽  
Wen Luo ◽  
Cuinan Li ◽  
Tingyu Wan ◽  
Zhen Zhang ◽  
...  

Based on the special rheological model of foam fluid, the mathematical models of cuttings transport for stable foam drilling in vertical/near vertical sections, the transitional section, and inclined/horizontal sections are established in this paper. The effects of various flow parameters on the cuttings bed thickness in the annulus are analyzed. The results show that inclination, annulus velocity, foam flow rate, and eccentricity are key factors affecting cuttings transport. The thickness of a cuttings bed gradually decreases with the inclination decrease of the highly deviated/horizontal sections. When the inclination is reduced to approximately 60°, the dynamic and static cuttings bed disappears and is substituted by the glide lamella, which consists of cuttings grains. Cuttings grains have various forms of movement on the lower borehole wall. When the inclination is reduced to below 30°, the cuttings are brought out of the well by the stable foam if the returning velocity of the annulus foam is larger than the depositing velocity of the cuttings. The thickness of the cuttings bed gradually decreases with the increase of annulus velocity. The increased foam quality reduces the concentration of annulus cuttings when the annulus velocity is constant and when it reaches a stable status earlier than the foam drilling fluid of lower foam quality. However, the concentration of the annulus cuttings at the final stage is constant. The thickness of the cuttings bed increases with increased eccentricity of the drill stem. When the eccentricity is large, the change of eccentricity has a high effect on the cuttings bed thickness.


2018 ◽  
Vol 931 ◽  
pp. 573-577
Author(s):  
Vladimir N. Morgun ◽  
Lyubov V. Morgun

The scientifically grounded and experimentally confirmed features of formation of stable foam concrete mixes in time are considered. It is shown that the formation of such gas-filled structures is possible only with water content, the value of which is sufficient for wetting the surface of all solid dispersed particles of raw materials, the formation of foam films and the processes of adsorption and chemical hydration of binder particles. It is proved that taking into account the value of the aeration potential of the foaming agent, it is possible to obtain stable foam concrete mixtures of a given density


2012 ◽  
Vol 04 (07) ◽  
pp. 438-444 ◽  
Author(s):  
Qingren Sun ◽  
Bo Xu
Keyword(s):  

2007 ◽  
Vol 4 (1) ◽  
pp. 103 ◽  
Author(s):  
Ozcan Baris ◽  
Luis Ayala ◽  
W. Watson Robert

The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified) fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow. 


Sign in / Sign up

Export Citation Format

Share Document