Hormonal control of reproduction in the female: the menstrual cycle

Author(s):  
Elizabeth H. Holt ◽  
Beatrice Lupsa ◽  
Grace S. Lee ◽  
Hanan Bassyouni ◽  
Harry E. Peery
2018 ◽  
Author(s):  
Rebecca Pierson ◽  
Kelly Pagidas

A normal menstrual cycle is the end result of a sequence of purposeful and coordinated events that occur from intact hypothalamic-pituitary-ovarian and uterine axes. The menstrual cycle is under hormonal control in the reproductively active female and is functionally divided into two phases: the proliferative or follicular phase and the secretory or luteal phase. This tight hormonal control is orchestrated by a series of negative and positive endocrine feedback loops that alter the frequency of the pulsatile secretion of gonadotropin-releasing hormone (GnRH), the pituitary response to GnRH, and the relative secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary gonadotrope with subsequent direct effects on the ovary to produce a series of sex steroids and peptides that aid in the generation of a single mature oocyte and the preparation of a receptive endometrium for implantation to ensue. Any derailment along this programmed pathway can lead to an abnormal menstrual cycle with subsequent impact on the ability to conceive and maintain a pregnancy. This review contains 7 figures and 26 references Key words: follicle-stimulating hormone, follicular phase, gonadotropin-releasing hormone, luteal phase, luteinizing hormone, menstrual cycle, ovulation, progesterone, proliferative phase, secretory phase


2021 ◽  
Author(s):  
Sarah Greenwell ◽  
Joshua Faskowitz ◽  
Laura Pritschet ◽  
Tyler Santander ◽  
Emily G. Jacobs ◽  
...  

Many studies have shown that the human endocrine system modulates brain function, reporting associations between fluctuations in hormone concentrations and both brain activity and connectivity. However, how hormonal fluctuations impact fast changes in brain network structure over short timescales remains unknown. Here, we leverage ``edge time series'' analysis to investigate the relationship between high-amplitude network states and quotidian variation in sex steroid and gonadotropic hormones in a single individual sampled over the course of two endocrine states, across a natural menstrual cycle and under a hormonal regimen. We find that the frequency of high-amplitude network states are associated with follicle-stimulating and luteinizing hormone, but not the sex hormones estradiol and progesterone. Nevertheless, we show that scan-to-scan variation in the co-fluctuation patterns expressed during network states are robustly linked with the concentration of all four hormones, positing a network-level target of hormonal control. We conclude by speculating on the role of hormones in shaping ongoing brain dynamics.


2012 ◽  
Vol 167 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Anne Bachelot ◽  
Zeina Chakhtoura ◽  
Geneviève Plu-Bureau ◽  
Mathieu Coudert ◽  
Christiane Coussieu ◽  
...  

ObjectiveWomen with classical congenital adrenal hyperplasia (CAH) exhibit reduced fertility due to several factors including anovulation. This has been attributed to a disturbed gonadotropic axis as in polycystic ovary syndrome (PCOS), but there is no precise evaluation. Our aim was to evaluate the gonadotropic axis and LH pulsatility patterns and to determine factor(s) that could account for the potential abnormality of LH pulsatility.DesignCase/control study.MethodsSixteen CAH women (11 with the salt-wasting form and five with the simple virilizing form), aged from 18 to 40 years, and 16 age-matched women, with regular menstrual cycles (28±3 days), were included. LH pulse patterns over 6 h were determined in patients and controls.ResultsNo differences were observed between patients and controls in terms of mean LH levels, LH pulse amplitude, or LH frequency. In CAH patients, LH pulsatility patterns were heterogeneous, leading us to perform a clustering analysis of LH data, resulting in a two-cluster partition. Patients in cluster 1 had similar LH pulsatility patterns to the controls. Patients in cluster 2 had: lower LH pulse amplitude and frequency and presented menstrual cycle disturbances more frequently; higher 17-OH progesterone, testosterone, progesterone, and androstenedione levels; and lower FSH levels.ConclusionsLH pulsatility may be normal in CAH women well controlled by hormonal treatment. Undertreatment is responsible for hypogonadotropic hypogonadism, with low LH pulse levels and frequency, but not PCOS. Suppression of progesterone and androgen concentrations during the follicular phase of the menstrual cycle should be a major objective in these patients.


Sign in / Sign up

Export Citation Format

Share Document