human endometrium
Recently Published Documents


TOTAL DOCUMENTS

1669
(FIVE YEARS 78)

H-INDEX

81
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Oliver N Mann ◽  
Chow-Send Kong ◽  
Emma S Lucas ◽  
Jan J Brosens ◽  
Aylin C Hanyaloglu ◽  
...  

The human luteinising hormone chorionic gonadotropin receptor (LHCGR) is a G-protein coupled receptor activated by both human chorionic gonadotropin (hCG) and luteinizing hormone (LH), two structurally related gonadotropins with essential roles in ovulation and maintenance of the corpus luteum. LHCGR expression predominates in ovarian tissues where it elicits functional responses through cyclic adenosine mononucleotide (cAMP), Ca2+ and extracellular signal-regulated kinase (ERK) signalling. LHCGR has also been localized to the human endometrium, with purported roles in decidualization and implantation. However, these observations are contentious. In this investigation, transcripts encoding LHCGR were undetectable in bulk RNA sequencing datasets from whole cycling endometrial tissue and cultured human endometrial stromal cells (EnSC). However, analysis of single-cell RNA sequencing data revealed cell-to-cell transcriptional heterogeneity and identified a small subpopulation of stromal cells with discernible LHCGR transcripts. In HEK-293 cells expressing recombinant LHCGR, both hCG and LH elicited robust cAMP, Ca2+ and ERK signals that were absent in wild type HEK-293 cells. However, none of these responses were recapitulated in primary EnSC cultures. In addition, proliferation, viability and decidual transformation of EnSC were refractory to both hCG and LH, irrespective of treatment to induce differentiation. Although we challenge the assertion that LHCGR is expressed at a functionally active level in the human endometrium, the discovery of a discrete subpopulation of EnSC that express LHCGR transcripts may plausibly account for the conflicting evidence in the literature.


2021 ◽  
Author(s):  
Juan S Gnecco ◽  
Alex T Brown ◽  
Kira Buttrey ◽  
Clara S Ives ◽  
Brittany A Goods ◽  
...  

The human endometrium is a mucosal barrier that undergoes cycles of growth, differentiation, and breakdown in response to sex hormone fluctuations. Dynamic tissue responses to hormones are primarily driven by epithelial-stromal communication and its dysregulation is linked to myriad gynecological disorders. The lack of robust in vitro models for the long-term 3D co-culture of patient-derived endometrial epithelial and stromal cells hinders dissection of this crosstalk and thus impairs progress in disease treatment. Here, we describe a versatile synthetic extracellular matrix tailored to the endometrium that enables the in vitro modeling of human healthy and disease states across the menstrual cycle. We used a tissue-inspired approach to semi-empirically screen a parameter space that encompasses the biophysical and molecular features of the endometrial microenvironment. Leveraging cell-specific integrin expression profiles, we defined a modular polyethylene glycol (PEG)-based hydrogel that fosters hormone-driven expansion and differentiation of epithelial organoids co-cultured with stromal cells. Characteristic morphological and molecular responses of each cell type to hormone changes were observed when cells were co-encapsulated in hydrogels tuned to a stiffness regime similar to the native tissue and functionalized with a collagen-derived adhesion peptide (GFOGER) and a fibronectin-derived peptide (PHSRN-K-RGD). Using transcriptomic and functional assays, we demonstrate the ability to recapitulate menstrual-cycle specific reproductive events and identified that inflammation-induced dysregulation of epithelial proliferation is mediated via the stromal compartment. Altogether, we demonstrate the development of a fully synthetic matrix to sustain the dynamic changes of the endometrial microenvironment and support its applications to understand endometriotic diseases.


2021 ◽  
Vol 10 (19) ◽  
pp. 4442
Author(s):  
Kamila Kolanska ◽  
Maria Sbeih ◽  
Geoffroy Canlorbe ◽  
Arsène Mekinian ◽  
Justine Varinot ◽  
...  

(1) Background: Ulipristal acetate (UPA) is a selective progesterone receptor modulator (SPRM) widely used for emergency contraception and mid- to long-term leiomyoma treatment. The aim of this study was to identify modifications of miRNA expression in superficial and basal layers of the human endometrium at the end of the UPA treatment for at least 3 months. (2) Methods: Microarray miRNA analysis of formalin-fixed, paraffin-embedded hysterectomy tissue samples was conducted, followed by an Ingenuity Pathway Analysis. Samples were divided into three groups: women having had 3 months of UPA treatment (n = 7); and two control groups of UPA-naïve women in the proliferative (n = 8) or secretory (n = 6) phase. (3) Results: The UPA modified the expression of 59 miRNAs involved in the processes of cell cycle, carcinogenesis, and inflammation. Their expression profiles were different in the basal and superficial layers. Most of the processes influenced by the UPA in the basal layer were connected to the cell cycle and immune regulation. (4) Conclusion: Specific changes were observed in both layers of the endometrium in the UPA group. However, the miRNA expression in the basal layer was not consistent with that in the superficial layer. Other large studies analysing the long-term impact of SPRM on endometrial miRNA expression are necessary.


2021 ◽  
Vol 116 (3) ◽  
pp. e307
Author(s):  
Delphine Haouzi ◽  
Frida Entezami ◽  
Sophie Brouillet ◽  
Fatima Barry ◽  
Anna Gala ◽  
...  

2021 ◽  
Vol 116 (3) ◽  
pp. e306-e307
Author(s):  
Paige M. Porrett ◽  
Giuliano Testa ◽  
Liza Johannesson ◽  
Michael Gonzalez ◽  
James Garifallou ◽  
...  

Development ◽  
2021 ◽  
Vol 148 (17) ◽  
Author(s):  
Lois A. Salamonsen ◽  
Jennifer C. Hutchison ◽  
Caroline E. Gargett

ABSTRACT Uniquely among adult tissues, the human endometrium undergoes cyclical shedding, scar-free repair and regeneration during a woman's reproductive life. Therefore, it presents an outstanding model for study of such processes. This Review examines what is known of endometrial repair and regeneration following menstruation and parturition, including comparisons with wound repair and the influence of menstrual fluid components. We also discuss the contribution of endometrial stem/progenitor cells to endometrial regeneration, including the importance of the stem cell niche and stem cell-derived extracellular vesicles. Finally, we comment on the value of endometrial epithelial organoids to extend our understanding of endometrial development and regeneration, as well as therapeutic applications.


2021 ◽  
Vol 116 (3) ◽  
pp. e111-e112
Author(s):  
Dimitar Parvanov ◽  
Rumiana Ganeva ◽  
Katarina Arsov ◽  
Ivon Decheva ◽  
Maria Handzhiyska ◽  
...  

Author(s):  
Ayşe Kübra Karaboğa Arslan ◽  
Leyla Paşayeva ◽  
Merve Ayşe Esen ◽  
Osman Tugay

Background: Endometrial cancer is one of the most common types of cancer. For this reason, various studies have been carried out on its treatment and the effects of natural products on this disease. Objective: This study aimed to examine the growth inhibitory effects of Eryngium kotschyi Boiss. ethyl acetate [EKE] and butanol [EKB] obtained from the main methanol [EKM] extract from the aerial parts on human endometrium carcinoma [RL95-2] cells and their synergistic effect with cisplatin or doxorubicin. Methods: RL95-2 cells were treated with E. kotschyi extracts either alone or in combination with cisplatin or doxorubicin. The effects on cell growth were determined using the MTT assay and real-time cell analysis xCELLigence. Results: The extracts demonstrated growth inhibitory activity, with a certain degree of selectivity against the RL95-2 cell line. Synergistic effects of EKE/cisplatin or doxorubicin at different concentration levels were demonstrated in RL95-2 cells. In some instances, the EKE/doxorubicin combinations resulted in antagonistic effects. The reduction level of cell viability was different and specific to each combination for the RL95-2 cell line. Conclusion: The growth inhibitory activity of cisplatin or doxorubicin, as a single agent, may be modified by combinations of the extracts and be synergistically enhanced in some cases. A significant synergistic effect of EKE on the RL95-2 cell line with cisplatin and doxorubicin was observed. This cytotoxic effect can be investigated in terms of molecular mechanisms. This study is the first of its kind in the literature. The mechanisms involved in this interaction between chemotherapeutic drugs and plant extracts remain unclear and should be further evaluated.


Sign in / Sign up

Export Citation Format

Share Document