Frankia and the actinorhizal symbiosis

Author(s):  
Didier Bogusz ◽  
Claudine Franche
2010 ◽  
Vol 25 (4) ◽  
pp. 241-252 ◽  
Author(s):  
Ken-ichi Kucho ◽  
Anne-Emmanuelle Hay ◽  
Philippe Normand

2011 ◽  
Vol 38 (9) ◽  
pp. 662 ◽  
Author(s):  
Luciano Andrés Gabbarini ◽  
Luis Gabriel Wall

Frankia BCU110501 induces nitrogen-fixing root nodules in Discaria trinervis (Gillies ex Hook. & Arn.) Reiche (Rhamnaceae) via intercellular colonisation, without root hair deformation. It produces diffusible factors (DFs) that might be involved in early interactions with the D. trinervis roots, playing a role in the nodulation process. The induction of root nodule development in actinorhizal symbiosis would depend on the concentration of factors produced by the bacteria and the plant. A detailed analysis of nodulation kinetics revealed that these DFs produce changes at the level of initial rate of nodulation and also in nodulation profile. Diluted Frankia BCU110501 inoculum could be activated in less than 96 h by DFs produced by Frankia BCU110501 cells that had been previously washed. Biochemical characterisation showed that Frankia BCU110501 DFs have a molecular weight of <12 kDa, are negatively charged at pH 7.0 and seem to contain a peptide bond necessary for their activity. Frankia BCU110501, belonging to Frankia Clade 3, does not induce nodules in Alnus acuminata H.B.K. ssp. acuminata but is able to deform root hairs, as do Frankia strains from Clade 1. The root hair deforming activity of Frankia BCU110501 DFs show the same biochemical characteristics of the DFs involved in nodulation of D. trinervis. These results suggest that Frankia symbiotic factors have a basic structure regardless of the infection pathway of the host plant.


2010 ◽  
Vol 76 (8) ◽  
pp. 2451-2460 ◽  
Author(s):  
Jean Popovici ◽  
Gilles Comte ◽  
�milie Bagnarol ◽  
Nicole Alloisio ◽  
Pascale Fournier ◽  
...  

ABSTRACT Plant secondary metabolites, and specifically phenolics, play important roles when plants interact with their environment and can act as weapons or positive signals during biotic interactions. One such interaction, the establishment of mutualistic nitrogen-fixing symbioses, typically involves phenolic-based recognition mechanisms between host plants and bacterial symbionts during the early stages of interaction. While these mechanisms are well studied in the rhizobia-legume symbiosis, little is known about the role of plant phenolics in the symbiosis between actinorhizal plants and Frankia genus strains. In this study, the responsiveness of Frankia strains to plant phenolics was correlated with their symbiotic compatibility. We used Myrica gale, a host species with narrow symbiont specificity, and a set of compatible and noncompatible Frankia strains. M. gale fruit exudate phenolics were extracted, and 8 dominant molecules were purified and identified as flavonoids by high-resolution spectroscopic techniques. Total fruit exudates, along with two purified dihydrochalcone molecules, induced modifications of bacterial growth and nitrogen fixation according to the symbiotic specificity of strains, enhancing compatible strains and inhibiting incompatible ones. Candidate genes involved in these effects were identified by a global transcriptomic approach using ACN14a strain whole-genome microarrays. Fruit exudates induced differential expression of 22 genes involved mostly in oxidative stress response and drug resistance, along with the overexpression of a whiB transcriptional regulator. This work provides evidence for the involvement of plant secondary metabolites in determining symbiotic specificity and expands our understanding of the mechanisms, leading to the establishment of actinorhizal symbioses.


Chemosphere ◽  
2015 ◽  
Vol 138 ◽  
pp. 300-308 ◽  
Author(s):  
Pier-Anne Bélanger ◽  
Jean-Philippe Bellenger ◽  
Sébastien Roy

Symbiosis ◽  
2016 ◽  
Vol 70 (1-3) ◽  
pp. 5-16 ◽  
Author(s):  
Louis S. Tisa ◽  
Rediet Oshone ◽  
Indrani Sarkar ◽  
Amir Ktari ◽  
Arnab Sen ◽  
...  

2000 ◽  
Vol 19 (2) ◽  
pp. 167-182 ◽  
Author(s):  
Luis Gabriel Wall

Sign in / Sign up

Export Citation Format

Share Document