plant secondary metabolites
Recently Published Documents


TOTAL DOCUMENTS

751
(FIVE YEARS 354)

H-INDEX

56
(FIVE YEARS 12)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Ana Mariel Torres-Contreras ◽  
Antoni Garcia-Baeza ◽  
Heriberto Rafael Vidal-Limon ◽  
Isaias Balderas-Renteria ◽  
Mónica A Ramírez-Cabrera ◽  
...  

Human skin works as a barrier against the adverse effects of environmental agents, including ultraviolet radiation (UVR). Exposure to UVR is associated with a variety of harmful effects on the skin, and it is one of the most common health concerns. Solar UVR constitutes the major etiological factor in the development of cutaneous malignancy. However, more than 90% of skin cancer cases could be avoided with appropriate preventive measures such as regular sunscreen use. Plants, constantly irradiated by sunlight, are able to synthesize specialized molecules to fight against UVR damage. Phenolic compounds, alkaloids and carotenoids constitute the major plant secondary metabolism compounds with relevant UVR protection activities. Hence, plants are an important source of molecules used to avoid UVR damage, reduce photoaging and prevent skin cancers and related illnesses. Due to its significance, we reviewed the main plant secondary metabolites related to UVR protection and its reported mechanisms. In addition, we summarized the research in Mexican plants related to UV protection. We presented the most studied Mexican plants and the photoprotective molecules found in them. Additionally, we analyzed the studies conducted to elucidate the mechanism of photoprotection of those molecules and their potential use as ingredients in sunscreen formulas.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaowei Xu ◽  
Liqun Jia ◽  
Xiaoran Ma ◽  
Huayao Li ◽  
Changgang Sun

As observed with other chemotherapeutic agents, the clinical application of platinum agents is a double-edged sword. Platinum-induced peripheral neuropathy (PIPN) is a common adverse event that negatively affects clinical outcomes and patients’ quality of life. Considering the unavailability of effective established agents for preventing or treating PIPN and the increasing population of cancer survivors, the identification and development of novel, effective interventions are the need of the hour. Plant-derived medicines, recognized as ideal agents, can not only help improve PIPN without affecting chemotherapy efficacy, but may also produce synergy. In this review, we present a brief summary of the mechanisms of platinum agents and PIPN and then focus on exploring the preventive or curative effects and underlying mechanisms of plant-derived medicines, which have been evaluated under platinum-induced neurotoxicity conditions. We identified 11 plant extracts as well as 17 plant secondary metabolites, and four polyherbal preparations. Their effects against PIPN are focused on oxidative stress and mitochondrial dysfunction, glial activation and inflammation response, and ion channel dysfunction. Also, ten clinical trials have assessed the effect of herbal products in patients with PIPN. The understanding of the molecular mechanism is still limited, the quality of clinical trials need to be further improved, and in terms of their efficacy, safety, and cost effectiveness studies have not provided sufficient evidence to establish a standard practice. But plant-derived medicines have been found to be invaluable sources for the development of natural agents with beneficial effects in the prevention and treatment of PIPN.


Author(s):  
Shouke Zhang ◽  
Junqia Kong ◽  
Longfei Chen ◽  
Kai Guo ◽  
Xudong Zhou

Plant secondary metabolites (PSMs) contained in plant litter will be released into soil with the decomposition process, which will affect the diversity and function of soil microbiomes. The response of soil microbiomes to PSMs in terms of diversity and function can provide an important theoretical basis for plantations to put forward rational soil ecological management measures.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 313
Author(s):  
Karma Yeshi ◽  
Darren Crayn ◽  
Edita Ritmejerytė ◽  
Phurpa Wangchuk

Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: “stress-affected plants,” “plant secondary metabolites, “abiotic stress,” “climatic influence,” “pharmacological activities,” “bioactive compounds,” “drug discovery,” and “medicinal plants” and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.


2022 ◽  
pp. 119-146
Author(s):  
Kareem A. Mosa ◽  
Muna A. Ali ◽  
Kalidoss Ramamoorthy ◽  
Ahmed Ismail

Author(s):  
A. S. M. Ali Reza ◽  
Mst. Samima Nasrin ◽  
Md. Amjad Hossen ◽  
Md. Atiar Rahman ◽  
Ibrahim Jantan ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1990
Author(s):  
Manu Kumar ◽  
Sandeep Kumar Singh ◽  
Prem Pratap Singh ◽  
Vipin Kumar Singh ◽  
Avinash Chandra Rai ◽  
...  

Tuberculosis (TB) is a recurrent and progressive disease, with high mortality rates worldwide. The drug-resistance phenomenon of Mycobacterium tuberculosis is a major obstruction of allelopathy treatment. An adverse side effect of allelopathic treatment is that it causes serious health complications. The search for suitable alternatives of conventional regimens is needed, i.e., by considering medicinal plant secondary metabolites to explore anti-TB drugs, targeting the action site of M. tuberculosis. Nowadays, plant-derived secondary metabolites are widely known for their beneficial uses, i.e., as antioxidants, antimicrobial agents, and in the treatment of a wide range of chronic human diseases (e.g., tuberculosis), and are known to “thwart” disease virulence. In this regard, in silico studies can reveal the inhibitory potential of plant-derived secondary metabolites against Mycobacterium at the very early stage of infection. Computational approaches based on different algorithms could play a significant role in screening plant metabolites against disease virulence of tuberculosis for drug designing.


Sign in / Sign up

Export Citation Format

Share Document