legume symbiosis
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 43)

H-INDEX

42
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Justin P. Hawkins ◽  
Ivan J. Oresnik

The interaction of bacteria with plants can result in either a positive, negative, or neutral association. The rhizobium-legume interaction is a well-studied model system of a process that is considered a positive interaction. This process has evolved to require a complex signal exchange between the host and the symbiont. During this process, rhizobia are subject to several stresses, including low pH, oxidative stress, osmotic stress, as well as growth inhibiting plant peptides. A great deal of work has been carried out to characterize the bacterial response to these stresses. Many of the responses to stress are also observed to have key roles in symbiotic signaling. We propose that stress tolerance responses have been co-opted by the plant and bacterial partners to play a role in the complex signal exchange that occurs between rhizobia and legumes to establish functional symbiosis. This review will cover how rhizobia tolerate stresses, and how aspects of these tolerance mechanisms play a role in signal exchange between rhizobia and legumes.


Author(s):  
Yannan Hu ◽  
Arun K. Pandey ◽  
Xinyang Wu ◽  
Pingping Fang ◽  
Pei Xu

Legumes are low-cost but high-yielding crops, which are rich in dietary proteins, vitamins and minerals. Known as mycorrhizal plants, legumes are widely used as model organisms to explore the plant-microbe interactions, especially the symbiotic relationship between plants and rhizosphere microorganisms. Arbuscular mycorrhizal fungi (AMF), an important class of plant-associated microbes, can regulate many physiological and molecular responses of plants. To date, AMF has been commonly used as a bio-fertilizer, whose inoculation to host plants can confer tolerance to different abiotic stresses such as drought, salinity, heat and heavy metals. This review provides an overview of the responses of legumes to drought stress (DS), a summary of the mechanism of AMF-legume symbiosis and its effect on host plant drought tolerance, which taken together reveals the significance of this symbiosis in agriculture. The presented rich information will help understand how host plants benefit from AMF to increase drought tolerance while finetuning their metabolic pathways. The potential and importance of AMF as one of the most effective and environmental-friendly management approaches for enhancing legume crop productivity against DS is highlighted.


2021 ◽  
Vol 19 (4) ◽  
pp. e08R01-e08R01
Author(s):  
Asma Boujenna ◽  

Agricultural yields are often limited by nitrogen (N) availability, especially in countries of the developing world, whereas in industrialized nations the application of chemical N fertilizers has reached unsustainable levels that have resulted in severe environmental consequences. Finding alternatives to inorganic fertilizers is critical for sustainable and secure food production. Although gaseous nitrogen (N2) is abundant in the atmosphere, it cannot be assimilated by most living organisms. Only a selected group of microorganisms termed diazotrophs, have evolved the ability to reduce N2 to generate NH3 in a process known as biological nitrogen fixation (BNF) catalysed by nitrogenase, an oxygen-sensitive enzyme complex. This ability presents an opportunity to improve the nutrition of crop plants, through the introduction into cereal crops of either the N fixing bacteria or the nitrogenase enzyme responsible for N fixation. This review explores three potential approaches to obtain N-fixing cereals: (a) engineering the nitrogenase enzyme to function in plant cells; (b) engineering the legume symbiosis into cereals; and (c) engineering cereals with the capability to associate with N-fixing bacteria.


2021 ◽  
Vol 19 (4) ◽  
pp. e08R01-e08R01
Author(s):  
Asma Boujenna ◽  

ricultural yields are often limited by nitrogen (N) availability, especially in countries of the developing world, whereas in industrialized nations the application of chemical N fertilizers has reached unsustainable levels that have resulted in severe environmental consequences. Finding alternatives to inorganic fertilizers is critical for sustainable and secure food production. Although gaseous nitrogen (N2) is abundant in the atmosphere, it cannot be assimilated by most living organisms. Only a selected group of microorganisms termed diazotrophs, have evolved the ability to reduce N2 to generate NH3 in a process known as biological nitrogen fixation (BNF) catalysed by nitrogenase, an oxygen-sensitive enzyme complex. This ability presents an opportunity to improve the nutrition of crop plants, through the introduction into cereal crops of either the N fixing bacteria or the nitrogenase enzyme responsible for N fixation. This review explores three potential approaches to obtain N-fixing cereals: (a) engineering the nitrogenase enzyme to function in plant cells; (b) engineering the legume symbiosis into cereals; and (c) engineering cereals with the capability to associate with N-fixing bacteria.


Author(s):  
Grace E. Wardell ◽  
Michael F. Hynes ◽  
Peter J. Young ◽  
Ellie Harrison

Rhizobia are one of the most important and best studied groups of bacterial symbionts. They are defined by their ability to establish nitrogen-fixing intracellular infections within plant hosts. One surprising feature of this symbiosis is that the bacterial genes required for this complex trait are not fixed within the chromosome, but are encoded on mobile genetic elements (MGEs), namely plasmids or integrative and conjugative elements. Evidence suggests that many of these elements are actively mobilizing within rhizobial populations, suggesting that regular symbiosis gene transfer is part of the ecology of rhizobial symbionts. At first glance, this is counterintuitive. The symbiosis trait is highly complex, multipartite and tightly coevolved with the legume hosts, while transfer of genes can be costly and disrupt coadaptation between the chromosome and the symbiosis genes. However, horizontal gene transfer is a process driven not only by the interests of the host bacterium, but also, and perhaps predominantly, by the interests of the MGEs that facilitate it. Thus understanding the role of horizontal gene transfer in the rhizobium–legume symbiosis requires a ‘mobile genetic element's-eye view' on the ecology and evolution of this important symbiosis. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.


Author(s):  
Sameh H Youseif ◽  
Fayrouz H Abd El-Megeed ◽  
Ali S Abdelaal ◽  
Amr Ageez ◽  
Esperanza Martínez-Romero

Abstract Legume root nodules harbor rhizobia and other non-nodulating endophytes known as nodule-associated bacteria (NAB) whose role in the legume symbiosis is still unknown. We analyzed the genetic diversity of thirty-four NAB isolates obtained from the root nodules of faba bean grown under various soil conditions in Egypt using 16S rRNA and concatenated sequences of three housekeeping genes. All isolates were identified as members of the family Enterobacteriaceae belonging to the genera Klebsiella, Enterobacter, and Raoultella. We identified nine enterobacterial genospecies, most of which have not been previously reported as NAB. All isolated strains harbored nifH gene sequences and most of them possessed plant growth-promoting (PGP) traits. Upon co-inoculation with an N2 fixing rhizobium (Rlv NGB-FR128), two strains (E. sichanensis NGB-FR97 and K. variicola NGB-FR116) significantly increased nodulation, growth, and N-uptake of faba bean plants over the single treatments or the uninoculated control. The presence of these enterobacteria in nodules was significantly affected by the host plant genotype, symbiotic rhizobium genotype, and endophyte genotype, indicating that the nodule colonization process is regulated by plant-microbe-microbe interactions. This study emphasizes the importance of nodule-associated enterobacteria and suggests their potential role in improving the effectiveness of rhizobial inoculants.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257053
Author(s):  
Franklin Harris ◽  
John Dobbs ◽  
David Atkins ◽  
James A. Ippolito ◽  
Jane E. Stewart

Due to increasing population growth and declining arable land on Earth, astroagriculture will be vital to terraform Martian regolith for settlement. Nodulating plants and their N-fixing symbionts may play a role in increasing Martian soil fertility. On Earth, clover (Melilotus officinalis) forms a symbiotic relationship with the N-fixing bacteria Sinorhizobium meliloti; clover has been previously grown in simulated regolith yet without bacterial inoculation. In this study, we inoculated clover with S. meliloti grown in potting soil and regolith to test the hypothesis that plants grown in regolith can form the same symbiotic associations as in soils and to determine if greater plant biomass occurs in the presence of S. meliloti regardless of growth media. We also examined soil NH4 concentrations to evaluate soil augmentation properties of nodulating plants and symbionts. Greater biomass occurred in inoculated compared to uninoculated groups; the inoculated average biomass in potting mix and regolith (2.23 and 0.29 g, respectively) was greater than the uninoculated group (0.11 and 0.01 g, respectively). However, no significant differences existed in NH4 composition between potting mix and regolith simulant. Linear regression analysis results showed that: i) symbiotic plant-bacteria relationships differed between regolith and potting mix, with plant biomass positively correlated to regolith-bacteria interactions; and, ii) NH4 production was limited to plant uptake yet the relationships in regolith and potting mix were similar. It is promising that plant-legume symbiosis is a possibility for Martian soil colonization.


2021 ◽  
Author(s):  
Kasthuri Rajendran ◽  
Vikram Kumar ◽  
Ilamathi Raja ◽  
Manoharan Kumariah ◽  
Jebasingh Tennyson

Abstract Rhizobium-legume symbiosis is considered as the major contributor of biological nitrogen fixation. In the present study, we have identified sigma factor 54-regulated sRNAs from the genome of five Rhizobium strains and integrated with the free-living and symbiotic specific transcriptome data to identify the novel putative sRNAs that are over expressed during the regulation of nitrogen fixation. A total of 1059 sRNAs were predicted from each genome of the select set of Rhizobium strains and 1,375 sRNAs were predicted from the transcriptome data of Bradyrhizobium japonicum. Target mRNA analysis revealed the functional role of putative novel sRNAs from different free-living and symbiotic strains. Those novel sRNAs were inferred to target several nodulation and nitrogen fixation genes including nodC, nodJ, nodY, nodJ, nodM, nodW, nodZ, nifD, nifN, nifQ, fixK, fixL, Fdx, nolB, and several cytochrome proteins. Further, sRNAs of Bradyrhizobium japonicum which targeted the regulatory genes of nitrogen fixation were experimentally confirmed with semi-quantitative reverse transcription polymerase chain reaction. Predicted target mRNAs were functionally classified based on the COG analysis and GO annotations. Studies on this sigma factor 54-regulated sRNA identification could be a better method to relate the role of sRNAs in nitrogen metabolism during free-living and symbiotic association with legumes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Citlali Fonseca-García ◽  
Noreide Nava ◽  
Miguel Lara ◽  
Carmen Quinto

Abstract Background Rhizobium–legume symbiosis is a specific, coordinated interaction that results in the formation of a root nodule, where biological nitrogen fixation occurs. NADPH oxidases, or Respiratory Burst Oxidase Homologs (RBOHs) in plants, are enzymes that generate superoxide (O2•−). Superoxide produces other reactive oxygen species (ROS); these ROS regulate different stages of mutualistic interactions. For example, changes in ROS levels are thought to induce ROS scavenging, cell wall remodeling, and changes in phytohormone homeostasis during symbiotic interactions. In common bean (Phaseolus vulgaris), PvRbohB plays a key role in the early stages of nodulation. Results In this study, to explore the role of PvRbohB in root nodule symbiosis, we analyzed transcriptomic data from the roots of common bean under control conditions (transgenic roots without construction) and roots with downregulated expression of PvRbohB (by RNA interference) non-inoculated and inoculated with R. tropici. Our results suggest that ROS produced by PvRBOHB play a central role in infection thread formation and nodule organogenesis through crosstalk with flavonoids, carbon metabolism, cell cycle regulation, and the plant hormones auxin and cytokinin during the early stages of this process. Conclusions Our findings provide important insight into the multiple roles of ROS in regulating rhizobia–legume symbiosis.


Sign in / Sign up

Export Citation Format

Share Document