Nonlinear latent variable regression methods

Author(s):  
Fouzi Harrou ◽  
Ying Sun ◽  
Amanda S. Hering ◽  
Muddu Madakyaru ◽  
Abdelkader Dairi
Author(s):  
Mohamed N. Nounou ◽  
Hazem N. Nounou ◽  
Muddu Madakyaru

Measured process data are a valuable source of information about the processes they are collected from. Unfortunately, measurements are usually contaminated with errors that mask the important features in the data and degrade the quality of any related operation. Wavelet-based multiscale filtering is known to provide effective noise-feature separation. Here, the effectiveness of multiscale filtering over conventional low pass filters is illustrated though their application to chemical and biological systems. For biological systems, various online and batch multiscale filtering techniques are used to enhance the quality of metabolic and copy number data. Dynamic metabolic data are usually used to develop genetic regulatory network models that can describe the interactions among different genes inside the cell in order to design intervention techniques to cure/manage certain diseases. Copy number data, however, are usually used in the diagnosis of diseases by determining the locations and extent of variations in DNA sequences. Two case studies are presented, one involving simulated metabolic data and the other using real copy number data. For chemical processes it is shown that multiscale filtering can greatly enhance the prediction accuracy of inferential models, which are commonly used to estimate key process variables that are hard to measure. In this chapter, we present a multiscale inferential modeling technique that integrates the advantages of latent variable regression methods with the advantages of multiscale filtering, and is called Integrated Multiscale Latent Variable Regression (IMSLVR). IMSLVR performance is illustrated via a case study using synthetic data and another using simulated distillation column data.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Muddu Madakyaru ◽  
Mohamed N. Nounou ◽  
Hazem N. Nounou

Proper control of distillation columns requires estimating some key variables that are challenging to measure online (such as compositions), which are usually estimated using inferential models. Commonly used inferential models include latent variable regression (LVR) techniques, such as principal component regression (PCR), partial least squares (PLS), and regularized canonical correlation analysis (RCCA). Unfortunately, measured practical data are usually contaminated with errors, which degrade the prediction abilities of inferential models. Therefore, noisy measurements need to be filtered to enhance the prediction accuracy of these models. Multiscale filtering has been shown to be a powerful feature extraction tool. In this work, the advantages of multiscale filtering are utilized to enhance the prediction accuracy of LVR models by developing an integrated multiscale LVR (IMSLVR) modeling algorithm that integrates modeling and feature extraction. The idea behind the IMSLVR modeling algorithm is to filter the process data at different decomposition levels, model the filtered data from each level, and then select the LVR model that optimizes a model selection criterion. The performance of the developed IMSLVR algorithm is illustrated using three examples, one using synthetic data, one using simulated distillation column data, and one using experimental packed bed distillation column data. All examples clearly demonstrate the effectiveness of the IMSLVR algorithm over the conventional methods.


2019 ◽  
Vol 44 (5) ◽  
pp. 597-624 ◽  
Author(s):  
Kilchan Choi ◽  
Jinok Kim

This article proposes a latent variable regression four-level hierarchical model (LVR-HM4) that uses a fully Bayesian approach. Using multisite multiple-cohort longitudinal data, for example, annual assessment scores over grades for students who are nested within cohorts within schools, the LVR-HM4 attempts to simultaneously model two types of change, arising from individual student over grades, and successive cohorts in the same grade over years. In addition, as an extension of Choi and Seltzer, the LVR coefficients, that is, gap-in-time parameter, capturing the relationships between initial status and rates of changes within each cohort and school, help bring to light the distribution of student growth and differences in the distribution over different cohorts within schools. Advantages associated with the LVR-HM4 can be highlighted in studies on monitoring school performance or evaluations of policies and practices that may target different aspects of student academic performance such as initial status, growth, or gap over time in schools.


Sign in / Sign up

Export Citation Format

Share Document