Advanced composite repair technology for aerospace, marine, and automobile applications

2022 ◽  
pp. 265-279
Author(s):  
Amit Raturi ◽  
Amit Joshi ◽  
Pankaj Rawat
Author(s):  
Chris Alexander

Composite materials have been used to repair high pressure pipelines and piping for the better part of 20 years. The initial aim of composite repair technology was focused on reinforcing corrosion. However, composite materials are now used to reinforce a wide array of anomalies and features including dents, mechanical damage, vintage girth and seam welds, wrinkle bends, elbows, tees, branch connections, and even cracks. In this paper the author provides an industry overview including results and insights from multiple research programs sponsored by composite repair manufacturers, pipeline operators, and the Pipeline Research Council International, Inc. Discussions will also be included regarding the important role that the ASME PCC-2 and ISO 24817 composite repair standards have in ensuring that quality control measures are in place. The ongoing focus of these efforts has been to demonstrate to industry the capabilities that composite repair systems have to provide long-term solutions for reinforcing damaged equipment.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6393
Author(s):  
Djouadi Djahida ◽  
Ghomari Tewfik ◽  
Maciej Witek ◽  
Mechri Abdelghani

Composite overwraps are a cost-effective repair technology, appropriate for corrosion defects, dents, and gouges for both onshore and offshore steel pipelines. The main benefit of polymer-based sleeves is safe installation without taking the pipeline out of service. This paper presents a new calculation procedure proposed in the form of an algorithm for the sizing of composite repairs of corroded pipelines when the sleeve is applied at zero internal pressure. The main objective of the presented methodology is determination of the effective thickness of the composite repair without its overestimation or underestimation. The authors used a non-linear finite element method with constitutive models allowing analysis of the steel, putty, and composite structures. The validation of the results of numerical computations compared to the experimental ones showed an appropriate agreement. The numerical calculations were applied to compare the analytical results in relation to those obtained by the standards ASME PCC-2 or ISO/TS 24817. The comparison showed that the proposed solution confirmed its effectiveness in reducing the thickness of the sleeve significantly, thus, showing that the current industrial standards provide a considerably excessive composite wrap around the steel pipe corroded area, which leads to an unnecessary increase in the repair costs.


Sign in / Sign up

Export Citation Format

Share Document