A wireless coded modulated FCS-MPC DPC for renewable energy sources in smart grid environment

2022 ◽  
pp. 67-83
Author(s):  
Alfeu J. Sguarezi Filho ◽  
Angelo S. Lunardi ◽  
Carlos E. Capovilla ◽  
Ivan R.S. Casella
Author(s):  
Jianhui Wong ◽  
Yun Seng Lim

Electrical grid is no longer featured in a conventional way nowadays. Today, the growing of new technologies, primarily the distributed renewable energy sources and electric vehicles, has been integrated with the distribution networks causing several technical issues. As a result, the penetration of the renewable energy sources can be limited by the utility companies. Smart grid has been emerged as one of the solutions to the technical issues, hence allowing the usage of renewable and improving the energy efficiency of the electrical grid. The challenge is to develop an intelligent management system to maintain the balance between the generation and demand. This task can be performed by using energy storage system. As part of the smart grid, the deployment of energy storage system plays a critical role in stabilizing the voltage and frequency of the networks with renewable energy sources and electric vehicles. This book chapter illustrates the revolution and the roles of energy storage for improving the network performance.


Author(s):  
M. Suresh ◽  
R. Meenakumari

An optimal utilization of smart grid connected hybrid renewable energy sources is proposed in this paper. The hybrid technique is the combination of recurrent neural network and adaptive whale optimization algorithm plus tabu search, called AWOTS. The main objective is the RES optimum operation for decreasing the electricity production cost by hourly day-ahead and real time scheduling. Here, the load demands are predicted using AWOTS to develop the correct control signals based on power difference between source and load side. Adaptive whale optimization algorithm searching behaviour is adjusted by tabu search. The proposed technique is executed in the MATLAB/Simulink working platform. To test the performance of the proposed method, the load demand for the 24-hour time period is demonstrated. By then the power generated in the sources, such as photovoltaic, wind turbine, micro turbine and battery by the proposed technique, is analyzed and compared with existing techniques, such as genetic algorithm, particle swarm optimization and whale optimization algorithm. Furthermore, the state of charge of the battery for the 24-hour period is compared with existing techniques. Likewise, the cost of the system is compared and error in the sources also compared. The comparison results affirm that the proposed technique has less computational time (35.001703) than the existing techniques. Moreover, the proposed method is cost-effective power production of smart grid and effective utilization of renewable energy sources without wasting the available energy.


Sign in / Sign up

Export Citation Format

Share Document