Lacustrine sequence stratigraphy: New insights from the study of the Yanchang Formation (Middle-Late Triassic), Ordos Basin, China

2022 ◽  
pp. 309-335
Author(s):  
Carlos Zavala ◽  
Huaqing Liu ◽  
Xiangbo Li ◽  
Mariano Arcuri ◽  
Mariano Di Meglio ◽  
...  
2017 ◽  
Vol 5 (2) ◽  
pp. SF15-SF29 ◽  
Author(s):  
Stephen C. Ruppel ◽  
Harry Rowe ◽  
Kitty Milliken ◽  
Chao Gao ◽  
Yongping Wan

The Late Triassic Yanchang Formation (Fm) is a major target of drilling for hydrocarbons in the Ordos Basin. Although most of the early focus on this thick succession of lacustrine rocks has been the dominant deltaic sandstones and siltstones, which act as local reservoirs of oil and gas, more recent consideration has been given to the organic-rich mudstone source rocks. We used modern chemostratigraphic analysis to define vertical facies successions in two closely spaced cores through the Chang 7 Member, the primary source rock for the Yanchang hydrocarbon system. We used integrated high-resolution X-ray fluorescence and X-ray diffraction measurements to define four dominant facies. Variations in stable carbon isotopes mimic facies stacking patterns, suggesting that terrigenous organic matter (although minor in volume) is associated with the arkoses and sandstones, whereas aquatic organic matter is dominant in the mudstones. Facies stacking patterns define three major depositional cycles and parts of two others, each defined by basal mudstone facies that document basin flooding and deepening (i.e., flooding surfaces). Unconfined compressive strength measurements correlate with clay mineral abundance and organic matter. Comparisons of core attributes with wireline logs indicate that although general variations in clay mineral volumes (i.e., mudstone abundance) can be discerned from gamma-ray logs, organic-matter distribution is best defined with density or resistivity logs. These findings, especially those established between the core and log data, provide a powerful linkage between larger scale facies patterns and smaller scale studies of key reservoir attributes, such as pore systems, mineralogy, diagenesis, rock mechanics, hydrocarbon saturation, porosity and permeability, and flow parameters. This first application of modern chemostratigraphic techniques to the Yanchang Fm reveals the great promise of applying these methods to better understand the complex facies patterns that define this lacustrine basin and the variations in key reservoir properties that each facies displays.


2017 ◽  
Vol 5 (2) ◽  
pp. SF81-SF98
Author(s):  
Jing Wang ◽  
Xiangbo Li ◽  
Huaqing Liu ◽  
Xiuqin Deng ◽  
Rong Wanyan

The Ordos Basin has abundant conventional and unconventional oil and gas resources. Focusing on shale oil in the Ordos Basin, we studied the distribution, depositional features, and resource potential of shales in the upper Triassic Yanchang Formation based on the Ordos Basin development and depocenter migration. During the late Triassic, the Ordos Basin was a large cratonic sedimentary basin that bordered to the Hexi Corridor to the west, the southern North China block to the east, the Qilian and western Qinling orogenic zone to the south, and the foot of the Yin Mountains to the north. During deposition of the Yanchang Formation, its depocenter was not fixed. It migrated to the west before deposition of the Chang 7 oil layer and to the south after deposition of the Chang 7 oil layer. Controlled by the depocenter migration and relevant deep-lake facies, the Yanchang Formation mainly developed two sets of source rocks. The dark mudstone and shale in the Chang 9 oil layer is chiefly distributed in the south-central region of the basin, with thicknesses of 4–16 m and covers an area of approximately [Formula: see text]. The shales in the Chang 7 oil layer can be divided into two types, black oil shale and dark mudstone, and they are much thicker and more widespread than the dark mudstone in the Chang 9 oil layer. The black shale alone can be up to 60 m thick, and covers an area of more than [Formula: see text]. The shales in the Chang 7 and 9 oil layers were mainly formed in a deep-lake environment that produced high concentrations of organic matter and large hydrocarbon generation potential. According to preliminary estimates, the Chang 7 oil shale may contain [Formula: see text] of oil, thereby representing a huge resource potential with broad exploration prospectivity.


2014 ◽  
Vol 8 (9) ◽  
pp. 6731-6743 ◽  
Author(s):  
Xiong Ding ◽  
Jingchun Tian ◽  
Jingshan Chen ◽  
Jingli Yao ◽  
Xiuqin Deng ◽  
...  

2022 ◽  
pp. 359-370
Author(s):  
A.J. (Tom) van Loon ◽  
Renchao Yang ◽  
Aiping Fan ◽  
Zuozhen Han

Sign in / Sign up

Export Citation Format

Share Document