clay mineral
Recently Published Documents


TOTAL DOCUMENTS

1859
(FIVE YEARS 308)

H-INDEX

76
(FIVE YEARS 8)

2022 ◽  
Vol 115 ◽  
pp. 190-214
Author(s):  
Yingtong Zou ◽  
Yezi Hu ◽  
Zewen Shen ◽  
Ling Yao ◽  
Duoyue Tang ◽  
...  
Keyword(s):  

2022 ◽  
Author(s):  
Liang Tao ◽  
Jianchun Guo ◽  
Zhongbo Wang ◽  
Yi Liu ◽  
Yuhang Zhao ◽  
...  

Abstract The optimization of shut-in-time in shale gas well is an important factor affecting the production of single well after volume fracturing. In this study, a new method for determining the optimal shut-in-time considering clay mineral content and ion diffusion concentration was proposed. First, a novel water spontaneous imbibition apparatus under the conditions of formation temperature and confining pressure was designed. Then, the water imbibition satuation of 15 shale samples from the Longmaxi Formation (LF) of the Sichuan Basin were measured to quantitatively evaluate the water imbibition ability and classify reservoir types. Finally, the salt ion concentration diffusion experiment was carried out to optimize the shut-in-time of different types of shale reservoirs. The experimental results shown that the clay mineral content was the key factor affecting water wettability of shale, the shale reservoirs can be divided into two types and the critical value of clay mineral content was about 40%. Based on the law of salt ion diffusion in shale, the initiation time of micro-fractures induced by shale hydration was about 10-15 days. Under the experimental conditions, the optimal shut-in time of type I shale reservoir and type II shale reservoir were about 20 days and 15 days respectively. The average daily gas production has increased from 15.6×104 m3/day to 25.1×104 m3/day. The study results can provide scientific basis for the optimization of flowback regime of shale gas resrvoirs.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Dahiru D. Muhammed ◽  
Naboth Simon ◽  
James E. P. Utley ◽  
Iris T. E. Verhagen ◽  
Robert A. Duller ◽  
...  

In the quest to use modern analogues to understand clay mineral distribution patterns to better predict clay mineral occurrence in ancient and deeply buried sandstones, it has been necessary to define palaeo sub-environments from cores through modern sediment successions. Holocene cores from Ravenglass in the NW of England, United Kingdom, contained metre-thick successions of massive sand that could not be unequivocally interpreted in terms of palaeo sub-environments using conventional descriptive logging facies analysis. We have therefore explored the use of geochemical data from portable X-ray fluorescence analyses, from whole-sediment samples, to develop a tool to uniquely define the palaeo sub-environment based on geochemical data. This work was carried out through mapping and defining sub-depositional environments in the Ravenglass Estuary and collecting 497 surface samples for analysis. Using R statistical software, we produced a classification tree based on surface geochemical data from Ravenglass that can take compositional data for any sediment sample from the core or the surface and define the sub-depositional environment. The classification tree allowed us to geochemically define ten out of eleven of the sub-depositional environments from the Ravenglass Estuary surface sediments. We applied the classification tree to a core drilled through the Holocene succession at Ravenglass, which allowed us to identify the dominant paleo sub-depositional environments. A texturally featureless (massive) metre-thick succession, that had defied interpretation based on core description, was successfully related to a palaeo sub-depositional environment using the geochemical classification approach. Calibrated geochemical classification models may prove to be widely applicable to the interpretation of sub-depositional environments from other marginal marine environments and even from ancient and deeply buried estuarine sandstones.


Author(s):  
Esra Orucoglu ◽  
Sylvain Grangeon ◽  
Alexandre Gloter ◽  
Jean-Charles Robinet ◽  
Benoît Madé ◽  
...  

Author(s):  
Helen Greenwood Hansma

Intracellular potassium concentrations, [K+], are high in all types of living cells, but the origins of this K+ are unknown. The simplest hypothesis is that life emerged in an environment that was high in K+. One such environment is the spaces between the sheets of the clay mineral, mica. The best mica for life’s origins is the black mica, biotite, because it has a high content of Mg++ and it has iron in various oxidation states. Life also has many of the characteristics of the environment between mica sheets, giving further support for the possibility that mica was the substrate on and within which life emerged.


2022 ◽  
Vol 216 ◽  
pp. 106368
Author(s):  
Jingong Cai ◽  
Jiazong Du ◽  
Mingshui Song ◽  
Tianzhu Lei ◽  
Xuejun Wang ◽  
...  

2021 ◽  
Vol 17 (2) ◽  
pp. 145-159
Author(s):  
Rezkia Azka Kamila

Background: Kaolin is a clay mineral with Al2Si2O5(OH)4 structure which can be found in sedimentary rocks also known as clay stones. Kaolin consists of clay materials such as quartz, illite, smectite, and hematite, with the largest constituent component being kaolinite. Kaolin is one of the most common minerals with an abundant presence in the earth's crust compared to other minerals, especially in Indonesia. In the pharmaceutical sector, this clay mineral is widely used in Indonesia. Kaolin is known to be a good adsorbent and has good physical, chemical, and surface physicochemical properties. Objective: This review article aims to provide information about the uses of kaolin in the pharmaceutical industry. Methods: This review article was written by conducting a literature search study method in the PubMed, ScienceDirect, and Google Scholar databases. Results: In the pharmaceutical field, kaolin is used as an excipient in various types of medicinal preparations, one of which is as a suspension agent because of its ability to stabilize suspensions in a deflocculated state as an emulsifying agent, crushing agent, filling agent, and drug carrier. As an active substance, kaolin is widely used because it has a therapeutic activity. In the cosmetic industry, kaolin can be administered in a variety of topical dosage forms which act as skin protective agents or sunscreens. Conclusion: Based on the results of the review, it was found that kaolin, with its abundant presence on earth and its great potential in the pharmaceutical field, is used as an active medicinal substance, excipient ingredient, and in the cosmetic field as a sunscreen. Keywords: Kaolin, excipient, active pharmaceutical ingredient, cosmetics


Soil Systems ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Bradley E. Suther ◽  
David S. Leigh ◽  
Larry T. West

Temporal changes in soil development were assessed on fluvial terraces of the Little River in the upper Coastal Plain of North Carolina. We examined five profiles from each of six surfaces spanning about 100,000 years. Soil-age relationships were evaluated with inter-surface clay mineral comparisons and regression of chemical properties versus previously reported optically-stimulated luminescence ages using the most developed subsoil horizon per profile. Bases to alumina (Bases/Al2O3) ratios have negative correlations with age, whereas dithionite-Fe (FeD) concentrations are positively correlated with time and differentiate floodplain (<200 yr BP) from terrace (≥10 ± 2 ka) soils and T4 pedons (75 ± 10 ka) from younger (T1-T3b, 10 ± 2–55 ± 15 ka) and older (T5b, 94 ± 16 ka) profiles. Entisols develop into Ultisols with exponentially decreasing Bases/Al2O3 ratios, reflecting rapid weatherable mineral depletion and alumina enrichment during argillic horizon development in the first 13–21 kyr of pedogenesis. Increasing FeD represents transformation and illuviation of free Fe inherited from parent sediments. Within ~80–110 kyr, a mixed clay mineral assemblage becomes dominated by kaolinite and gibbsite. Argillic horizons form by illuviation, secondary mineral transformations, and potentially, a bioturbation-translocation mechanism, in which clays distributed within generally sandy deposits are transported to surface horizons by ants and termites and later illuviated to subsoils. T5b profiles have FeD concentrations similar to, and gibbsite abundances greater than, those of pedons on 0.6–1.6 Ma terraces along Coastal Plain rivers that also drain the Appalachian Piedmont. This is likely because the greater permeability and lower weatherable mineral contents of sandy, Coastal Plain-sourced Little River alluvium favor more rapid weathering, gibbsite formation, and Fe translocation than the finer-grained, mineralogically mixed sediments of Piedmont-draining rivers. Therefore, recognizing provenance-related textural and mineralogical distinctions is crucial for evaluating regional chronosequences.


Sign in / Sign up

Export Citation Format

Share Document