Inverted fault systems and inversion tectonic settings

Author(s):  
Mark Cooper ◽  
Marian J. Warren
Solid Earth ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 1187-1204
Author(s):  
Tim P. Dooley ◽  
Michael R. Hudec

Abstract. We used physical models to investigate the structural evolution of segmented extensional rifts containing syn-rift evaporites and their subsequent inversion. An early stage of extension generated structural topography consisting of a series of en-échelon graben. Our salt analog filled these graben and the surroundings before continued extension and, finally, inversion. During post-salt extension, deformation in the subsalt section remained focused on the graben-bounding fault systems, whereas deformation in suprasalt sediments was mostly detached, forming a sigmoidal extensional minibasin system across the original segmented graben array. Little brittle deformation was observed in the post-salt section. Sedimentary loading from the minibasins drove salt up onto the footwalls of the subsalt faults, forming diapirs and salt-ridge networks on the intra-rift high blocks. Salt remobilization and expulsion from beneath the extensional minibasins was enhanced along and up the major relay or transfer zones that separated the original sub-salt grabens, forming major diapirs in these locations. Inversion of this salt-bearing rift system produced strongly decoupled shortening belts in basement and suprasalt sequences. Suprasalt deformation geometries and orientations are strongly controlled by the salt diapir and ridge network produced during extension and subsequent downbuilding. Thrusts are typically localized at minibasin margins where the overburden was thinnest, and salt had risen diapirically on the horst blocks. In the subsalt section, shortening strongly inverted sub-salt grabens, which uplifted the suprasalt minibasins. New pop-up structures also formed in the subsalt section. Primary welds formed as suprasalt minibasins touched down onto inverted graben. Model geometries compare favorably to natural examples such as those in the Moroccan High Atlas.


2020 ◽  
Author(s):  
Tim P. Dooley ◽  
Michael R. Hudec

Abstract. We used physical models to investigate the structural evolution of segmented extensional rifts containing syn-rift evaporites and their subsequent inversion. An early stage of extension generated structural topography consisting of a series of en-échelon graben. Our salt analog filled these graben and the surroundings before continued extension and, finally, inversion. During post-salt extension, deformation in the subsalt section remained focused on the graben-bounding fault systems whereas deformation in suprasalt sediments was mostly detached, forming a sigmoidal extensional minibasin system across the original segmented graben array. Little brittle deformation was observed in the post-salt section. Sedimentary loading from the minibasins drove salt up onto the footwalls of the subsalt faults, forming diapirs and salt-ridge networks on the intra-rift high blocks. Salt remobilization and expulsion from beneath the extensional minibasins was enhanced along and up the major relay/transfer zones that separated the original sub-salt grabens, forming major diapirs in these locations. Inversion of this salt-bearing rift system produced strongly decoupled shortening belts in basement and suprasalt sequences. Suprasalt deformation geometries and orientations are strongly controlled by the salt diapir and ridge network produced during extension and subsequent downbuilding. Thrusts are typically localized at minibasin margins where the overburden was thinnest and salt had risen diapirically on the horst blocks. In the subsalt section, shortening strongly inverted sub-salt grabens, which uplifted the suprasalt minibasins. New popup structures also formed in the subsalt section. Primary welds formed as suprasalt minibasins touched down onto inverted graben. Model geometries compare favorably to natural examples such as those in the Moroccan High Atlas.


2013 ◽  
Vol 734-737 ◽  
pp. 458-462
Author(s):  
Ya Chun Wang ◽  
Xiang Li ◽  
Rong Zhao ◽  
Xue Qiu ◽  
Zong Bao Liu

The seismic data interpretation shows that faults in Pubei Oilfield developed in the form of the lower, middle and upper fault systems, vertically corresponding to the tectonic evolution stages of Songliao Basin which are rifting, depression and inversion stages; in the plane the faults in Pubei Oilfield appear dense characteristics to be belts, especially in Fuyang oil layer, but not clear and sparse in Putaohua oil layer; faults dense belts in Fuyang oil layer from five orientations combine alternately, cutting Fuyang oil layer into the grid feature, but the faults distribution of Putaohua oil layer is related with the fault blocks division of the Pubei Oilfield. Generally, 8 fault belts separate the Pubei Oilfield into seven fault blocks.


2020 ◽  
Author(s):  
Xiyuan Li ◽  
Wangshui Hu ◽  
Zhongying Lei ◽  
Chijun Huang ◽  
Silin Yin

<p>In the process of plate tectonic movement, extensional faults and conversion faults occur.In the process of studying the rift system of central and west Africa, by comparing the basin types and fault plane distribution characteristics of Africa and South America on both sides of the Atlantic ocean, it can be seen that the main continental fault on both sides of the Atlantic ocean and the fault developed at the mid-ocean ridge on the bottom of the Atlantic ocean belong to the conversion fault.The function of conversion faults is to regulate the difference in the moving speed between blocks in the contemporaneous structure. Therefore, the conversion faults developed in these three regions are similar and interrelated in terms of structure type, structure style, block movement mode and direction.The main transference faults in various regions play a role in regulating the differences of continental extension and inversion tectonic rates in the Atlantic ocean, Africa and South America.</p><p>There are two transition fault systems in the rift system of central Africa and west Africa. Under the joint action of these two transition fault systems, extensional basins and transition basins are mainly developed in the rift system of central and west Africa. Moreover, these two transition fault systems play different roles in different stages of the tectonic movement of the whole African plate.</p><p>After detailed interpretation of seismic data, it can be found that there are mainly fault-controlled inversion structures in Doseo basin and Doba basin.</p><p>As a representative of transition basins, fault-controlled inversion structures are widely developed in the Doseo basin, but they have different distribution characteristics.Among them, fault-controlled inversion structures with large inversion ranges are distributed near large faults in the basin, while fault-controlled inversion structures with small inversion ranges are far away from the structural units of the main controlled faults, the inversion structures have a small amplitude, and the stratigraphic reconstruction fragmentation degree is relatively weak. The inversion structures with weak inversion are mainly developed in the middle, western depression and southern uplift of Doseo basin.And as the representative of the extensional basin. In Doba basin, fault-controlled inversion structures are mainly developed, and the structures with high inversion rate are distributed in the central depression zone of the basin. The low inversion rate structures are distributed in the uplift and slope areas in the western part of the basin. By studying the development types and distribution locations of inversion structures in basins, it can be known that different types of basins have different transformation conditions during inversion.</p><p>Therefore, by comparing the differences in the plane and vertical characteristics of the inversion tectonic development of Doseo and Doba basins, as well as the studies on the eastern and western and non-other basins, it can be concluded that during the tectonic evolution of the rift system in central and west Africa, especially during the transition inversion stage, there were significant differences between the transition basin and the extensional basin.</p>


Author(s):  
Regina Birchem

Spheroids of the green colonial alga Volvox consist of biflagellate Chlamydomonad-like cells embedded in a transparent sheath. The sheath, important as a substance through which metabolic materials, light, and the sexual inducer must pass to and from the cells, has been shown to have an ordered structure (1,2). It is composed of both protein and carbohydrate (3); studies of V. rousseletii indicate an outside layer of sulfated polysaccharides (4).Ultrastructural studies of the sheath material in developmental stages of V. carteri f. weismannia were undertaken employing variations in the standard fixation procedure, ruthenium red, diaminobenzidine, and high voltage electron microscopy. Sheath formation begins after the completion of cell division and inversion of the daughter spheroids. Golgi, rough ER, and plasma membrane are actively involved in phases of sheath synthesis (Fig. 1). Six layers of ultrastructurally differentiated sheath material have been identified.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


2002 ◽  
Vol 715 ◽  
Author(s):  
P. Louro ◽  
A. Fantoni ◽  
Yu. Vygranenko ◽  
M. Fernandes ◽  
M. Vieira

AbstractThe bias voltage dependent spectral response (with and without steady state bias light) and the current voltage dependence has been simulated and compared to experimentally obtained values. Results show that in the heterostructures the bias voltage influences differently the field and the diffusion part of the photocurrent. The interchange between primary and secondary photocurrent (i. e. between generator and load device operation) is explained by the interaction of the field and the diffusion components of the photocurrent. A field reversal that depends on the light bias conditions (wavelength and intensity) explains the photocurrent reversal. The field reversal leads to the collapse of the diode regime (primary photocurrent) launches surface recombination at the p-i and i-n interfaces which is responsible for a double-injection regime (secondary photocurrent). Considerations about conduction band offsets, electrical field profiles and inversion layers will be taken into account to explain the optical and voltage bias dependence of the spectral response.


Sign in / Sign up

Export Citation Format

Share Document