african plate
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 19)

H-INDEX

24
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5342
Author(s):  
Marcin Jagoda

Current knowledge about tectonic plate movement is widely applied in numerous scientific fields; however, questions still remain to be answered. In this study, the focus is on the determination and analysis of the parameters that describe tectonic plate movement, i.e., the position (F and L) of the rotation pole and angular rotation speed (w). The study was based on observational material, namely the positions and velocities of the GNSS stations in the International Terrestrial Reference Frame 2014 (ITRF2014), and based on these data, the motion parameters of five major tectonic plates were determined. All calculations were performed using software based on a least squares adjustment procedure that was developed by the author. The following results were obtained: for the African plate, Φ = 49.15 ± 0.10°, Λ = −80.82 ± 0.30°, and ω = 0.267 ± 0.001°/Ma; for the Australian plate, Φ = 32.94 ± 0.05°, Λ = 37.70 ± 0.12°, and ω = 0.624 ± 0.001°/Ma; for the South American plate, Φ = –19.03 ± 0.20°, Λ = −119.78 ± 0.39°, and ω = 0.117 ± 0.001°/Ma; for the Pacific plate, Φ = −62.45 ± 0.07°, Λ = 111.01 ± 0.14°, and ω = 0.667 ± 0.001°/Ma; and for the Antarctic plate, Φ = 61.54 ± 0.30°, Λ = −123.01 ± 0.49°, and ω = 0.241 ± 0.003°/Ma. Then, the results were compared with the geological plate motion model NNR-MORVEL56 and the geodetic model ITRF2014 PMM, with good agreement. In the study, a new approach is proposed for determining plate motion parameters, namely the sequential method. This method allows one to optimize the data by determining the minimum number of stations required for a stable solution and by identifying the stations that negatively affect the quality of the solution and increase the formal errors of the determined parameters. It was found that the stability of the solutions of the F, L, and w parameters varied depending on the parameters and the individual tectonic plates.



2021 ◽  
Author(s):  
Derya Guerer ◽  
Roi Granot ◽  
Douwe van Hinsbergen

Global plate reorganizations, intriguing but loosely defined periods of profoundly changing plate motions, may be caused by a single trigger such as a continental collision or a rising mantle plume. But whether and how such triggers propagate throughout a plate circuit remains unknown. Here, we show how a rising mantle plume set off a ‘plate tectonic chain reaction’. Plume rise has been shown to trigger formation of a subduction zone within the Neotethys Ocean between Africa and Eurasia at ~105 Ma. We provide new constraints on Africa-Eurasia convergence rates using variations in geomagnetic ‘noise’ within the Cretaceous Normal Superchron (the 126-83 Ma period without magnetic reversals) recorded in the Atlantic Quiet Zones crust. These new constraints are consistent with the timing of numerically predicted African Plate acceleration and deceleration associated with onset and arrest of the intra-Neotethyan subduction zone. The acceleration was associated with a change in Africa-Eurasia convergence direction, which in turn was accommodated by a next subduction initiation at ~85 Ma in the Alpine region that cascaded into regional tectonic events. Our concept of plate tectonic chain reactions shows how changes in plate motion, underpinned by mantle dynamics, may self-perpetuate through a plate circuit, making global plate reorganizations a key to unlock the driving mechanisms behind plate tectonics.



Tectonics ◽  
2021 ◽  
Author(s):  
Marius C. Wouters ◽  
Lucía Pérez‐Díaz ◽  
Amy Tuck‐Martin ◽  
Graeme Eagles ◽  
Jürgen Adam ◽  
...  
Keyword(s):  


Author(s):  
M. Farhan ◽  
M. Gomaa

International Terrestrial Reference Frames (ITRF) is an accurate and standard frame for referencing positions at different times and in different locations around the world. The International Global Navigation Satellite System (GNSS) Service, (IGS) enable global positioning and timing at the highest possible accuracy through modernized datum’s aligned with the ITRF. In addition, ITRF site velocities for any location within Africa are between 24 and 31 mm/yr due to rigid motion of the African plate over the underlying mantle. The African plate can be divided into two Nubian and Somalia sub-plates. In the present work, the rotation rates about Euler poles and position improvement in Nubian and Somalia plates with updated ITRFs are investigated. Among the results in this study, when using a rigid plate movement and instantaneous ITRF coordinates to transform a fixed reference epoch, in case of Nubian plate, the residual in positioning and Root Mean Square Error (RMS) improved with the updating of the frame and the best results of residual and RMS appear in frame 2008 by values (0.149,0.011) m. respectively but in Somali plate, residual and RMS increased with the updating of the frame and the best results appear in frame2014 by values (i.,e., 0.096, 0.012) m, respectively.



Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 231
Author(s):  
Paraskevi Nomikou ◽  
Pavlos Krassakis ◽  
Stavroula Kazana ◽  
Dimitrios Papanikolaou ◽  
Nikolaos Koukouzas

The active Kos-Nisyros-Tilos volcanic field is located in the eastern sector of the Aegean Volcanic Arc resulting from the subduction of the African plate beneath the Aegean plate. The volcanic activity is developed since Middle Pleistocene and it occurs within a tectonic graben with several volcanic outcrops both onshore and offshore. Data obtained from previous offshore geophysical surveys and ROV exploration, combined with geospatial techniques have been used to construct synthetic maps of the broader submarine area. The volcanic relief is analyzed from the base of the volcanic structures offshore to their summits onshore reaching 1373 m of height and their volumes have been computed with 24.26 km3 for Nisyros Island and a total volume of 54.42 km3 for the entire volcanic area. The volcanic structures are distinguished in: (1) volcanic cones at the islands of Nisyros (older strato-volcano), Pergousa, Yali and Strongyli, (2) volcanic domes at the islands of Pachia, East Kondeliousa and Nisyros (younger Prophitis Ilias domes), (3) submarine volcanic calderas (Avyssos and Kefalos). Submarine volcanic debris avalanches have been also described south of Nisyros and undulating features at the eastern Kefalos bay. Submarine canyons and channels are developed along the Kos southern margin contrary to the Tilos margin. Ground truth campaigns with submarine vessels and ROVs have verified the previous analysis in several submarine volcanic sites. The geohazards of the area comprise: (1) seismic hazard, both due to the activation of major marginal faults and minor intra-volcanic faults, (2) volcanic hazard, related to the recent volcanic structures and long term iconic eruptions related to the deep submarine calderas, (3) tsunami hazard, related to the seismic hazard as well as to the numerous unstable submarine slopes with potential of gravity sliding.



2021 ◽  
Vol 176 (5) ◽  
Author(s):  
Sylvin S. T. Tedonkenfack ◽  
Jacek Puziewicz ◽  
Sonja Aulbach ◽  
Theodoros Ntaflos ◽  
Mary-Alix Kaczmarek ◽  
...  

AbstractThe origin and evolution of subcontinental lithospheric mantle (SCLM) are important issues of Earth’s chemical and physical evolution. Here, we report detailed textural and chemical analyses on a mantle xenolith suite from Befang (Oku Volcanic Group, Cameroon Volcanic Line), which represents a major tectono-magmatic structure of the African plate. The samples are sourced from spinel-facies mantle and are dominated by lherzolites. Their texture is cataclastic to porphyroclastic, and foliation defined by grain-size variation and alignment of spinel occurs in part of peridotites. Spinel is interstitial and has amoeboidal shape. Clinopyroxene REE patterns are similar to those of Depleted MORB Mantle (DMM) except LREEs, which vary from depleted to enriched. The A-type olivine fabric occurs in the subset of one harzburgite and 7 lherzolites studied by EBSD. Orthopyroxene shows deformation consistent with olivine. The fabric of LREE-enriched clinopyroxene is equivalent to those of orthopyroxene and olivine, whereas spinel and LREE-depleted clinopyroxene are oriented independently of host rock fabric. The textural, chemical and thermobarometric constraints indicate that the Befang mantle section was refertilised by MORB-like melt at pressures of 1.0–1.4 GPa and temperatures slightly above 1200–1275 °C. The olivine-orthopyroxene framework and LREE-enriched clinopyroxene preserve the protolith fabric. In contrast, the LREE-depleted clinopyroxene, showing discordant deformation relative to the olivine-orthopyroxene protolith framework, and amoeboidal spinel crystallized from the infiltrating melt. The major element and REEs composition of minerals forming the Befang peridotites indicate subsequent reequilibration at temperatures 930–1000 °C. This was followed by the formation of websterite veins in the lithospheric mantle, which can be linked to Cenozoic volcanism in the Cameroon Volcanic Line that also brought the xenoliths to the surface. This study therefore supports the origin of fertile SCLM via refertilization rather than by extraction of small melt fractions, and further emphasizes the involvement of depleted melts in this process.



Geology ◽  
2021 ◽  
Author(s):  
A. Raveloson ◽  
A. Nyblade ◽  
R. Durrheim

We investigated the architecture of the greater Congo Basin, one of the largest and least-well-studied sedimentary basins on any continent. Seismograms from a large number of M > 4.5 earthquakes within and surrounding the African plate were used to make event-to-station Rayleigh wave group velocity measurements between periods of 5 and 100 s. Group velocities for discrete periods across the basin, obtained by inverting the event-station measurements, were jointly modeled with gravity data to obtain a three-dimensional S-wave and density model of the basin. The model corroborates the existence of two previously suggested subbasins, one to the north and one to the south, each ~8 km deep and separated by an east-west structural high. Our results favor a salt tectonics origin for the structural high but cannot rule out uplifted basement rock. The northern subbasin is offset to the west from the southern subbasin, consistent with previous studies suggesting sinistral motion along basement faults during periods of transpressional tectonics in late Neoproterozoic–early Paleozoic times.



Author(s):  
Pauline Galea ◽  
Matthew R. Agius ◽  
George Bozionelos ◽  
Sebastiano D’Amico ◽  
Daniela Farrugia

Abstract The Sicily Channel, situated on the leading edge of the African plate as it collides with Europe, presents a range of interesting and complex tectonic processes that have developed in response to various regional stress fields. The characterization and interpretation of the seismic activity, however, still presents a challenge. The Maltese islands, lying approximately 100 km to the south of Sicily, are known to have been affected by a number of earthquakes in the Channel, with some of these events estimated to be very close to the islands. Yet, in the absence of nearby seismic instruments, an accurate evaluation and mapping of small magnitude seismicity, and, hence, the identification of unmapped active faults in the region, remains a challenge. This situation is being partially addressed through the deployment of more seismic stations on the Maltese archipelago. The Malta Seismic Network (MSN; International Federation of Digital Seismograph Networks code ML, see Data and Resources), managed by the Seismic Monitoring and Research Group, within the Department of Geosciences, University of Malta, currently comprises eight broadband, three-component stations covering an area of, approximately, 315  km2. Continuous seismic monitoring is possible following upgrades to real-time data transmission and automated epicenter location, coupled with a virtual seismic network established through SeisComP3, and focused mainly on the Mediterranean region. Such a dense national network, besides improving epicentral location in the Sicily Channel, will provide valuable information on microearthquake activity known to occur in close proximity to the islands, which has been very difficult to study in the past. It will also provide opportunities to study shallow crustal structure, site response on different geological substrates, microseismic noise propagation, and effects of anthropogenic activities. Here, we give a technical description of the MSN and an appraisal of its potential.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiannan Meng ◽  
Ozan Sinoplu ◽  
Zhipeng Zhou ◽  
Bulent Tokay ◽  
Timothy Kusky ◽  
...  

AbstractEarthquakes are a consequence of the motions of the planet’s tectonic plates, yet predicting when and where they may occur, and how to prepare remain some of the shortcomings of using scientific knowledge to protect human life. A devastating Mw 7.0 earthquake on October 30, 2020, offshore Samos Island, Greece was a consequence of the Aegean and Anatolian upper crust being pulled apart by north–south extensional stresses resulting from slab rollback, where the African plate is subducting northwards beneath Eurasia, while the slab is sinking by gravitational forces, causing it to retreat southwards. Since the retreating African slab is coupled with the overriding plate, it tears the upper plate apart as it retreats, breaking it into numerous small plates with frequent earthquakes along their boundaries. Historical earthquake swarms and deformation of the upper plate in the Aegean have been associated with massive volcanism and cataclysmic devastation, such as the Mw 7.7 Amorgos earthquake in July 1956 between the islands of Naxos and Santorini (Thera). Even more notable was the eruption of Santorini 3650 years ago, which contributed to the fall of the Minoan civilization. The Samos earthquake highlights the long historical lack of appreciation of links between deep tectonic processes and upper crustal deformation and geological hazards, and is a harbinger of future earthquakes and volcanic eruptions, establishing a basis for studies to institute better protection of infrastructure and upper plate cultures in the region.



2021 ◽  
Author(s):  
Emmanuel Skourtsos ◽  
Haralambos Kranis ◽  
Spyridon Mavroulis ◽  
Efthimios Lekkas

<p>The NNE-SSW, right-lateral Kefalonia Transform Fault (KTF) marks the western termination of the subducting Hellenic slab, which is a part of the oceanic remnant of the African plate. The inception of the KTF, described as a STEP fault, is placed in the Pliocene. KTF is considered to be the most active earthquake source in the Eastern Mediterranean. During the last two decades, four significant earthquakes (M>6.0) have been associated with the KTF. These events are attributed to the reactivation of different segments of the KTF, which are (from North to South) the North Lefkada, South Lefkada, Fiskardo, Paliki and Zakynthos segments: the North Lefkada segment ruptured in the 2003 earthquake, the 2014 Kefalonia events are associated with the Paliki segment and the 2015 Lefkada earthquake with the South Lefkada (and possibly the Fiskardo) segments.</p><p>The upper plate structure in the islands of Lefkada and Kefalonia is characterized by the Ionian Unit, thrusted over the Paxi (or Pre-Apulian) Unit. The Ionian Thrust, which brings the Ionian over the Paxi Unit, is a main upper-plate NNW-SSE, NE-dipping structure. It runs through the island of Lefkada, to be mapped onshore again at the western coast of Ithaki and at SE Kefalonia. Two other major thrusts are mapped on this island: the Aenos thrust, which has a WNW-ESE strike at the southern part of the island and gradually curves towards NNW-SSE in the west and the Kalo Fault in the northern part. These Pliocene (and still active) structures developed during the late-most stages of thrusting in the Hellenides, strike obliquely to the KTF and appear to abut against it.</p><p>We suggest that these thrusts control not only the deformation within the upper plate, but also the earthquake segmentation of the KTF. This suggestion is corroborated by the spatio-temporal distribution and source parameters of the recent, well-documented earthquake events and by the macroseismic effects of these earthquakes. The abutment of the Ionian thrust against the KTF marks the southern termination of the Lefkada earthquake segment, which ruptured in the 2003 earthquake, while the Aenos, (or the Kalo) thrust mark the southern end of the Fiskardo segment. The spatial distribution of the Earthquake Environmental Effects related to the four significant events in the last 20 years displays a good correlation with our interpretation: most of the 2003 macroseismic effects are located in the northern part of Lefkada, which belongs to the upper block of the Ionian thrust; similarly, the effects of the 2014 earthquakes of Kefalonia are distributed mainly in the Paliki Peninsula and the southern part of the island that belong to the footwall of the Aenos thrust and the 2015 effects are found in SW Lefkada, which is part of the footwall of the Ionian thrust.</p><p>We suggest that correlation between upper-plate structure and plate boundary faulting can provide insights in the understanding of faulting pattern in convergent settings, therefore contributing to earthquake management plans.</p>



Sign in / Sign up

Export Citation Format

Share Document