RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5179-5181
Author(s):  
Sayantan Mondal ◽  
Biman Bagchi

Neglects of inherent anisotropy and distinct dielectric boundaries may lead to completely erroneous results. We demonstrate that such mistakes can give rise to gross underestimation of the static dielectric constant of cylindrically nanoconfined water.


2021 ◽  
Author(s):  
Marcin Cudny ◽  
Katarzyna Staszewska

AbstractIn this paper, modelling of the superposition of stress-induced and inherent anisotropy of soil small strain stiffness is presented in the framework of hyperelasticity. A simple hyperelastic model, capable of reproducing variable stress-induced anisotropy of stiffness, is extended by replacement of the stress invariant with mixed stress–microstructure invariant to introduce constant inherent cross-anisotropic component. A convenient feature of the new model is low number of material constants directly related to the parameters commonly used in the literature. The proposed description can be incorporated as a small strain elastic core in the development of some more sophisticated hyperelastic-plastic models of overconsolidated soils. It can also be used as an independent model in analyses involving small strain problems, such as dynamic simulations of the elastic wave propagation. Various options and features of the proposed anisotropic hyperelastic model are investigated. The directional model response is compared with experimental data available in the literature.


Sign in / Sign up

Export Citation Format

Share Document