EXACT: an Expert System for Real Time X-Ray Image Analysis and Classification of Weldings

1992 ◽  
pp. 646-650
Author(s):  
Giorgio Montini ◽  
Maria Grazia Bordini ◽  
Flavio Boschetti ◽  
Stefano Ripamonti
Keyword(s):  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajit Nair ◽  
Santosh Vishwakarma ◽  
Mukesh Soni ◽  
Tejas Patel ◽  
Shubham Joshi

Purpose The latest 2019 coronavirus (COVID-2019), which first appeared in December 2019 in Wuhan's city in China, rapidly spread around the world and became a pandemic. It has had a devastating impact on daily lives, the public's health and the global economy. The positive cases must be identified as soon as possible to avoid further dissemination of this disease and swift care of patients affected. The need for supportive diagnostic instruments increased, as no specific automated toolkits are available. The latest results from radiology imaging techniques indicate that these photos provide valuable details on the virus COVID-19. User advanced artificial intelligence (AI) technologies and radiological imagery can help diagnose this condition accurately and help resolve the lack of specialist doctors in isolated areas. In this research, a new paradigm for automatic detection of COVID-19 with bare chest X-ray images is displayed. Images are presented. The proposed model DarkCovidNet is designed to provide correct binary classification diagnostics (COVID vs no detection) and multi-class (COVID vs no results vs pneumonia) classification. The implemented model computed the average precision for the binary and multi-class classification of 98.46% and 91.352%, respectively, and an average accuracy of 98.97% and 87.868%. The DarkNet model was used in this research as a classifier for a real-time object detection method only once. A total of 17 convolutionary layers and different filters on each layer have been implemented. This platform can be used by the radiologists to verify their initial application screening and can also be used for screening patients through the cloud. Design/methodology/approach This study also uses the CNN-based model named Darknet-19 model, and this model will act as a platform for the real-time object detection system. The architecture of this system is designed in such a way that they can be able to detect real-time objects. This study has developed the DarkCovidNet model based on Darknet architecture with few layers and filters. So before discussing the DarkCovidNet model, look at the concept of Darknet architecture with their functionality. Typically, the DarkNet architecture consists of 5 pool layers though the max pool and 19 convolution layers. Assume as a convolution layer, and as a pooling layer. Findings The work discussed in this paper is used to diagnose the various radiology images and to develop a model that can accurately predict or classify the disease. The data set used in this work is the images bases on COVID-19 and non-COVID-19 taken from the various sources. The deep learning model named DarkCovidNet is applied to the data set, and these have shown signification performance in the case of binary classification and multi-class classification. During the multi-class classification, the model has shown an average accuracy 98.97% for the detection of COVID-19, whereas in a multi-class classification model has achieved an average accuracy of 87.868% during the classification of COVID-19, no detection and Pneumonia. Research limitations/implications One of the significant limitations of this work is that a limited number of chest X-ray images were used. It is observed that patients related to COVID-19 are increasing rapidly. In the future, the model on the larger data set which can be generated from the local hospitals will be implemented, and how the model is performing on the same will be checked. Originality/value Deep learning technology has made significant changes in the field of AI by generating good results, especially in pattern recognition. A conventional CNN structure includes a convolution layer that extracts characteristics from the input using the filters it applies, a pooling layer that reduces calculation efficiency and the neural network's completely connected layer. A CNN model is created by integrating one or more of these layers, and its internal parameters are modified to accomplish a specific mission, such as classification or object recognition. A typical CNN structure has a convolution layer that extracts features from the input with the filters it applies, a pooling layer to reduce the size for computational performance and a fully connected layer, which is a neural network. A CNN model is created by combining one or more such layers, and its internal parameters are adjusted to accomplish a particular task, such as classification or object recognition.


2021 ◽  
Vol 52 (4) ◽  
Author(s):  
José F. Reyes ◽  
Elías Contreras ◽  
Christian Correa ◽  
Pedro Melin

An image analysis algorithm for the classification of cherries in real time by processing their digitalized colour images was developed, and tested. A set of five digitalized images of colour pattern, corresponding to five colour classes defined for commercial cherries, was characterized. The algorithm performs the segmentation of the cheery image by rejecting the pixels of the background and keeping the image features corresponding to the coloured area of the fruit. A histogram analysis was carried out for the RGB and HSV colour spaces, where the Red and Hue components showed differences between each of the specified colour patterns of the exporting reference system. This information led to the development of a hybrid Bayesian classification algorithm based on the components R and H. Its accuracy was tested with a set of cherry samples within the colour range of interest. The algorithm was implemented by means of a real time C++ code in Microsoft Visual Studio environment. When testing, the algorithm showed a 100% effectiveness in classifying a sample set of cherries into the five standardized cherry classes. The components of the hardware-software system for implementing the methodology are low cost, thus ensuring an affordable commercial deployment.


2013 ◽  
Vol 333-335 ◽  
pp. 1155-1158
Author(s):  
Tong He Sun ◽  
Zhi Guo Bai

This paper discusses land utilization and classification based on remote sensing image analysis expert system technology. Taking the bureau department area remote sensing images as the basic information, and using MAPGIS and Ecognition software, we carry on the classification of the land. The results show that remote sensing image analysis expert system technology applies to land utilization situation and land classification, which has reference value.


1986 ◽  
Vol 47 (10) ◽  
pp. 1791-1795 ◽  
Author(s):  
M. Ribet ◽  
S. Gits-Léon ◽  
F. Lefaucheux ◽  
M.C. Robert
Keyword(s):  

2012 ◽  
Author(s):  
Jukka Rantanen ◽  
Hjalte Trnka ◽  
Jian Wu ◽  
Marco van de Weert ◽  
Holger Grohganz

2018 ◽  
Vol 2018 (1) ◽  
pp. 162-165
Author(s):  
Shin Mizutani ◽  
Daichi Yamaguchi ◽  
Takeshi Fujiwara ◽  
Masato Yasumoto ◽  
Ryunosuke Kuroda
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document