Higher Order Turbulence Model Predictions for Complex 2D and 3D Flowfields

Author(s):  
Florian R. Menter
1994 ◽  
Vol 116 (2) ◽  
pp. 369-380 ◽  
Author(s):  
P. Tekriwal

Standard and extended k–ε turbulence closure models have been employed for three-dimensional heat transfer calculations for radially outward flow in rectangular and square cooling passages rotating in orthogonal mode. The objective of this modeling effort is to validate the numerical model in an attempt to fill the gap between model predictions and the experimental data for heat transfer in rotating systems. While the trend of heat transfer predictions by the standard k–ε turbulence model is satisfactory, the differences between the data and the predictions are approximately 30 percent or so in the case of high rotation number flow. The extended k–ε turbulence model takes an approach where an extra “source” term based on a second time scale of the turbulent kinetic energy production rate is added to the equation for the dissipation rate of turbulent kinetic energy. This yields a more effective calculation of turbulent kinetic energy as compared to the standard k–ε turbulence model in the case of high rotation number and high density ratio flow. As a result, comparison with the experimental data available in the literature shows that an improvement of up to a significant 15 percent (with respect to data) in the heat transfer coefficient predictions is achieved over the standard k–ε model in the case of high rotation number flow. Comparisons between the results of the standard k–ε model and the extended formulation are made at different rotation numbers, different Reynolds numbers, and varying temperature ratio. The results of the extended k–ε turbulence model are either as good or better than those of the standard k–ε model in all these cases of parametric study. Thus, the extended k–ε turbulence model proves to be more general and reduces the discrepancy between the model predictions and the experimental data for heat transfer in rotating systems.


AIAA Journal ◽  
2000 ◽  
Vol 38 (8) ◽  
pp. 1394-1402 ◽  
Author(s):  
Christopher L. Rumsey ◽  
Thomas B. Gatski ◽  
Joseph H. Morrison

1995 ◽  
Vol 2 (1) ◽  
pp. 51-58
Author(s):  
P. Tekriwal

The objective of the current modeling effort is to validate the numerical model and improve upon the prediction of heat transfer in rotating systems. Low-Reynolds number turbulence model (without the wall function) has been employed for three-dimensional heat transfer predictions for radially outward flow in a square cooling duct rotating about an axis perpendicular to its length. Computations are also made using the standard and extended high-Reynolds number kturbulence models (in conjunction with the wall function) for the same flow configuration. The results from all these models are compared with experimental data for flows at different rotation numbers and Reynolds number equal to 25,000. The results show that the low-Reynolds number model predictions are not as good as the high-Re model predictions with the wall function. The wall function formulation predicts the right trend of heat transfer profile and the agreement with the data is within 30% or so for flows at high rotation number. Since the Navier-Stokes equations are integrated all the way to wall in the case of low-Re model, the computation time is relatively high and the convergence is rather slow, thus rendering the low-Re model as an unattractive choice for rotating flows at high Reynolds number.The extended k-ε turbulence model is also employed to compute heat transfer for rotating flows with uneven wall temperatures and uniform wall heat flux conditions. The comparison with the experimental data available in literature shows that the predictions on both the leading wall and the trailing wall are satisfactory and within 5-25% agreement.


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1394-1402
Author(s):  
Christopher L. Rumsey ◽  
Thomas B. Gatski ◽  
Joseph H. Morrison

Sign in / Sign up

Export Citation Format

Share Document