scholarly journals Tests of the higher order turbulence model for atmospheric circulations (HOTMAC) at Deseret Chemical Depot

1998 ◽  
Author(s):  
K.R. Costigan
Author(s):  
Debasish Biswas ◽  
Hideo Iwasaki ◽  
Masaru Ishizuka

In the present work two-dimensional viscous flows through compressor and gas turbine blade cascades at low subsonic and transonic speed are analyzed by solving compressible N-S equations in the generalized co-ordinate system, so that sufficient number of grid points could be distributed in the boundary layer and wake regions. An efficient Implicit Approximate Factorization (IAF) finite difference scheme, originally developed by Beam-Warming, is used together with a higher order Total Variation Diminishing (TVD) scheme based on the MUSCL-type approach with the Roe’s approximate Rieman solver for shock capturing. In order to predict the boundary layer turbulence characteristics, shock boundary layer interaction, transition from laminar to turbulent flow, etc. with sufficient accuracy, an improved low Reynolds number k-ε turbulence model developed by the authors is used. In this k-ε model, the low Reynolds number damping factors are defined as a function of turbulence Reynolds number which is only a rather general indicator of the degree of turbulence activity at any location in the flow rather than a specific function of the location itself. Computations are carried out for different flow conditions of compressor and gas turbine blade cascades for which detailed and reliable information about shock location, shock losses, viscous losses, blade surface pressure distribution and overall performance are available. Comparison of computed results with the experimental data showed a very good agreement. The results demonstrated that the Navier-Stokes approach using the present k-ε turbulence model and higher order TVD scheme would lead to improved prediction of viscous flow phenomena in turbomachinery cascades.


2003 ◽  
Vol 70 (1) ◽  
pp. 2-9 ◽  
Author(s):  
J. E. Akin ◽  
T. Tezduyar ◽  
M. Ungor ◽  
S. Mittal

For the streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations for flow problems, we present in this paper a comparative study of the stabilization parameters defined in different ways. The stabilization parameters are closely related to the local length scales (“element length”), and our comparisons include parameters defined based on the element-level matrices and vectors, some earlier definitions of element lengths, and extensions of these to higher-order elements. We also compare the numerical viscosities generated by these stabilized formulations with the eddy viscosity associated with a Smagorinsky turbulence model that is based on element length scales.


2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.


Author(s):  
G.F. Bastin ◽  
H.J.M. Heijligers

Among the ultra-light elements B, C, N, and O nitrogen is the most difficult element to deal with in the electron probe microanalyzer. This is mainly caused by the severe absorption that N-Kα radiation suffers in carbon which is abundantly present in the detection system (lead-stearate crystal, carbonaceous counter window). As a result the peak-to-background ratios for N-Kα measured with a conventional lead-stearate crystal can attain values well below unity in many binary nitrides . An additional complication can be caused by the presence of interfering higher-order reflections from the metal partner in the nitride specimen; notorious examples are elements such as Zr and Nb. In nitrides containing these elements is is virtually impossible to carry out an accurate background subtraction which becomes increasingly important with lower and lower peak-to-background ratios. The use of a synthetic multilayer crystal such as W/Si (2d-spacing 59.8 Å) can bring significant improvements in terms of both higher peak count rates as well as a strong suppression of higher-order reflections.


Author(s):  
H. S. Kim ◽  
S. S. Sheinin

The importance of image simulation in interpreting experimental lattice images is well established. Normally, in carrying out the required theoretical calculations, only zero order Laue zone reflections are taken into account. In this paper we assess the conditions for which this procedure is valid and indicate circumstances in which higher order Laue zone reflections may be important. Our work is based on an analysis of the requirements for obtaining structure images i.e. images directly related to the projected potential. In the considerations to follow, the Bloch wave formulation of the dynamical theory has been used.The intensity in a lattice image can be obtained from the total wave function at the image plane is given by: where ϕg(z) is the diffracted beam amplitide given by In these equations,the z direction is perpendicular to the entrance surface, g is a reciprocal lattice vector, the Cg(i) are Fourier coefficients in the expression for a Bloch wave, b(i), X(i) is the Bloch wave excitation coefficient, ϒ(i)=k(i)-K, k(i) is a Bloch wave vector, K is the electron wave vector after correction for the mean inner potential of the crystal, T(q) and D(q) are the transfer function and damping function respectively, q is a scattering vector and the summation is over i=l,N where N is the number of beams taken into account.


Sign in / Sign up

Export Citation Format

Share Document