Heat Transfer Predictions With Extended k–ε Turbulence Model in Radial Cooling Ducts Rotating in Orthogonal Mode

1994 ◽  
Vol 116 (2) ◽  
pp. 369-380 ◽  
Author(s):  
P. Tekriwal

Standard and extended k–ε turbulence closure models have been employed for three-dimensional heat transfer calculations for radially outward flow in rectangular and square cooling passages rotating in orthogonal mode. The objective of this modeling effort is to validate the numerical model in an attempt to fill the gap between model predictions and the experimental data for heat transfer in rotating systems. While the trend of heat transfer predictions by the standard k–ε turbulence model is satisfactory, the differences between the data and the predictions are approximately 30 percent or so in the case of high rotation number flow. The extended k–ε turbulence model takes an approach where an extra “source” term based on a second time scale of the turbulent kinetic energy production rate is added to the equation for the dissipation rate of turbulent kinetic energy. This yields a more effective calculation of turbulent kinetic energy as compared to the standard k–ε turbulence model in the case of high rotation number and high density ratio flow. As a result, comparison with the experimental data available in the literature shows that an improvement of up to a significant 15 percent (with respect to data) in the heat transfer coefficient predictions is achieved over the standard k–ε model in the case of high rotation number flow. Comparisons between the results of the standard k–ε model and the extended formulation are made at different rotation numbers, different Reynolds numbers, and varying temperature ratio. The results of the extended k–ε turbulence model are either as good or better than those of the standard k–ε model in all these cases of parametric study. Thus, the extended k–ε turbulence model proves to be more general and reduces the discrepancy between the model predictions and the experimental data for heat transfer in rotating systems.

2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2729-2741
Author(s):  
Zhenchuan Wang ◽  
Guoli Qi ◽  
Meijun Li

The turbulence model fails in supercritical fluid-flow and heat transfer simulation, owing to the drastic change of thermal properties. The inappropriate buoyancy effect model and the improper turbulent Prandtl number model are several of these factors lead to the original low-Reynolds number turbulence model unable to predict the wall temperature for vertically heated tubes under the deteriorate heat transfer conditions. This paper proposed a simplified improved method to modify the turbulence model, using the generalized gradient diffusion hypothesis approximation model for the production term of the turbulent kinetic energy due to the buoyancy effect, using a turbulence Prandtl number model for the turbulent thermal diffusivity instead of the constant number. A better agreement was accomplished by the improved turbulence model compared with the experimental data. The main reason for the over-predicted wall temperature by the original turbulence model is the misuse of the buoyancy effect model. In the improved model, the production term of the turbulent kinetic energy is much higher than the results calculated by the original turbulence model, especially in the boundary-layer. A more accurate model for the production term of the turbulent kinetic energy is the main direction of further modification for the low Reynolds number turbulence model.


1995 ◽  
Vol 2 (1) ◽  
pp. 51-58
Author(s):  
P. Tekriwal

The objective of the current modeling effort is to validate the numerical model and improve upon the prediction of heat transfer in rotating systems. Low-Reynolds number turbulence model (without the wall function) has been employed for three-dimensional heat transfer predictions for radially outward flow in a square cooling duct rotating about an axis perpendicular to its length. Computations are also made using the standard and extended high-Reynolds number kturbulence models (in conjunction with the wall function) for the same flow configuration. The results from all these models are compared with experimental data for flows at different rotation numbers and Reynolds number equal to 25,000. The results show that the low-Reynolds number model predictions are not as good as the high-Re model predictions with the wall function. The wall function formulation predicts the right trend of heat transfer profile and the agreement with the data is within 30% or so for flows at high rotation number. Since the Navier-Stokes equations are integrated all the way to wall in the case of low-Re model, the computation time is relatively high and the convergence is rather slow, thus rendering the low-Re model as an unattractive choice for rotating flows at high Reynolds number.The extended k-ε turbulence model is also employed to compute heat transfer for rotating flows with uneven wall temperatures and uniform wall heat flux conditions. The comparison with the experimental data available in literature shows that the predictions on both the leading wall and the trailing wall are satisfactory and within 5-25% agreement.


Author(s):  
Amalia R. Black

Comparisons between numerical predictions and experimental data for a methane fire have been performed. Vertical velocity and turbulent kinetic energy measurements along the centerline of the fire were used to validate the models in the SIERRA/Fuego fire code. Two different turbulence treatments, a steady RANS solution with a model for buoyancy generated turbulence, and an unsteady solution with closure models based on a temporal filter width were used. Solution sensitivity to grid size has been examined for both approaches. The results indicate strong sensitivities to the turbulence model.


2018 ◽  
Author(s):  
Ben Trettel

Estimating the turbulent kinetic energy at the nozzle outlet is necessary to model turbulent jet breakup. We identified errors in a model of nozzle turbulence developed by Huh et al. which made the model inaccurate. To develop an improved model, we derived a generalized form of the Bernoulli equation for non-cavitating flows. The equation can be used to estimate turbulent kinetic energy, k, and dissipation, ε, in internal flows given loss coefficients or friction factors and a turbulence model. The equation allows turbulent kinetic energy and dissipation to be estimated without computational fluid dynamics. The estimates can be used as-is where turbulent kinetic energy or dissipation are desired, or as a more accurate boundary condition for computational fluid dynamics. A model for fully developed pipe flow is developed and compared against experimental data. A nozzle turbulence model which could replace Huh et al.'s is also developed, but the model has not been validated due to a lack of experimental data.


Author(s):  
Savas Yavuzkurt ◽  
Ganesh R. Iyer

A modified low-Reynolds number k-ε model (named YI-diffn. model) for predicting effects of high free stream turbulence (FST) on momentum transport and heat transfer in a flat plate turbulent boundary layer is presented. An additional turbulent kinetic energy (TKE) diffusion term incorporating the effects of FST intensity (velocity scale) and length scale was included in the TKE equation. This model was developed with experience from many years of experimental and theoretical studies in the area of high FST flows. The constant cμ in the equation for the transport coefficient μt was modified using experimental data. These modifications were applied to a well-tested k-ε model (K-Y Chien called KYC in this study) under high FST conditions (initial FST intensity, Tui > 5%). Models were implemented in a 2-D boundary layer code. The high FST zero pressure gradient data sets against which the predictions (in the turbulent region) were compared had initial FST intensities of 6.53% and 25.7%. In a previous paper, it was shown that predictions of the original k-ε models became poorer (over prediction up to more than 50% for skin friction coefficient and Stanton number, and under prediction of TKE up to more than 50%) as FST increased to about 26%. In comparison, the new model developed here provided excellent results (within ±3% of experimental data) for skin friction coefficient and Stanton number for both the data sets. TKE results were excellent for Tui = 6.53%, but have scope for improvement in the case of Tui = 25.7%. The present model incorporates physics of transport of free stream turbulence in turbulence modeling and provides a new method for simulating flows with high FST. Future work will focus upon improving the model further and applying it to practical applications like flow over gas turbine blades.


2014 ◽  
Vol 18 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Momir Sjeric ◽  
Darko Kozarac ◽  
Rudolf Tomic

The development of a two zone k-? turbulence model for the cycle-simulation software is presented. The in-cylinder turbulent flow field of internal combustion engines plays the most important role in the combustion process. Turbulence has a strong influence on the combustion process because the convective deformation of the flame front as well as the additional transfer of the momentum, heat and mass can occur. The development and use of numerical simulation models are prompted by the high experimental costs, lack of measurement equipment and increase in computer power. In the cycle-simulation codes, multi zone models are often used for rapid and robust evaluation of key engine parameters. The extension of the single zone turbulence model to the two zone model is presented and described. Turbulence analysis was focused only on the high pressure cycle according to the assumption of the homogeneous and isotropic turbulent flow field. Specific modifications of differential equation derivatives were made in both cases (single and two zone). Validation was performed on two engine geometries for different engine speeds and loads. Results of the cyclesimulation model for the turbulent kinetic energy and the combustion progress variable are compared with the results of 3D-CFD simulations. Very good agreement between the turbulent kinetic energy during the high pressure cycle and the combustion progress variable was obtained. The two zone k-? turbulence model showed a further progress in terms of prediction of the combustion process by using only the turbulent quantities of the unburned zone.


Author(s):  
Chung-Chu Chen ◽  
Tong-Miin Liou

Laser-Doppler velocimetry (LDV) measurements are presented of turbulent flow in a two-pass square-sectioned duct simulating the coolant passages employed in gas turbine blades under rotating and non-rotating conditions. For all cases studied, the Reynolds number characterized by duct hydraulic diameter (Dh) and bulk mean velocity (Ub) was fixed at 1 × 104. The rotating case had a range of rotation number (Ro = ΩDh/Ub) from 0 to 0.2. It is found that both the skewness of streamwise mean velocity and magnitude of secondary-flow velocity increase linearly, and the magnitude of turbulence intensity level increases non-linearly with increasing Ro. As Ro is increased, the curvature induced symmetric Dean vortices in the turn for Ro = 0 is gradually dominated by a single vortex most of which impinges directly on the outer part of leading wall. The high turbulent kinetic energy is closely related to the dominant vortex prevailing inside the 180-deg sharp turn. For the first time, the measured flow characteristics account for the reported spanwise heat transfer distributions in the rotating channels, especially the high heat transfer enhancement on the leading wall in the turn. For both rotating and non-rotating cases, the direction and strength of the secondary flow with respect to the wall are the most important fluid dynamic factors affecting local heat transfer distributions inside a 180-deg sharp turn. The role of the turbulent kinetic energy in affecting the overall enhancement of heat transfer is well addressed.


Author(s):  
M. Stripf ◽  
A. Schulz ◽  
H.-J. Bauer ◽  
S. Wittig

Two extended models for the calculation of rough wall transitional boundary layers with heat transfer are presented. Both models comprise a new transition onset correlation, which accounts for the effects of roughness height and density, turbulence intensity and wall curvature. In the transition region, an intermittency equation suitable for rough wall boundary layers is used to blend between the laminar and fully turbulent state. Finally, two different submodels for the fully turbulent boundary layer complete the two models. In the first model, termed KS-TLK-T in this paper, a sand roughness approach from Durbin et al., which builds upon a two-layer k-ε-turbulence model, is used for this purpose. The second model, the so-called DEM-TLV-T model, makes use of the discrete-element roughness approach, which was recently combined with a two-layer k-ε-turbulence model by the present authors. The discrete element model will be formulated in a new way suitable for randomly rough topographies. Part I of the paper will provide detailed model formulations as well as a description of the database used for developing the new transition onset correlation. Part II contains a comprehensive validation of the two models, using a variety of test cases with transitional and fully turbulent boundary layers. The validation focuses on heat transfer calculations on both, the suction and the pressure side of modern turbine airfoils. Test cases include extensive experimental investigations on a high-pressure turbine vane with varying surface roughness and turbulence intensity, recently published by the current authors as well as new experimental data from a low-pressure turbine vane. In the majority of cases, the predictions from both models are in good agreement with the experimental data.


Author(s):  
Oguz Uzol ◽  
Cengiz Camci

A new concept for enhanced turbulent transport of heat in internal coolant passages of gas turbine blades is introduced. The new heat transfer augmentation component called “oscillator fin” is based on an unsteady flow system using the interaction of multiple unsteady jets and wakes generated downstream of a fluidic oscillator. Incompressible, unsteady and two dimensional solutions of Reynolds Averaged Navier-Stokes equations are obtained both for an oscillator fin and for an equivalent cylindrical pin fin and the results are compared. Preliminary results show that a significant increase in the turbulent kinetic energy level occur in the wake region of the oscillator fin with respect to the cylinder with similar level of aerodynamic penalty. The new concept does not require additional components or power to sustain its oscillations and its manufacturing is as easy as a conventional pin fin. The present study makes use of an unsteady numerical simulation of mass, momentum, turbulent kinetic energy and dissipation rate conservation equations for flow visualization downstream of the new oscillator fin and an equivalent cylinder. Relative enhancements of turbulent kinetic energy and comparisons of the total pressure field from transient simulations qualitatively suggest that the oscillator fin has excellent potential in enhancing local heat transfer in internal cooling passages without significant aerodynamic penalty.


Sign in / Sign up

Export Citation Format

Share Document